The quick change of direction (i.e., agility) is an important athletic ability in numerous sports. Because of the diverse and therefore hardly predictable manifestations of agility in sports, studies noted that the improvement in speed, power, and balance should result in an improvement of agility. However, there is evident lack of data regarding the influence of potential predictors on different agility manifestations. The aim of this study was to determine the gender-specific influence of speed, power, and balance on different agility tests. A total of 32 college-aged male athletes and 31 college-aged female athletes (age 20.02 ± 1.89 years) participated in this study. The subjects were mostly involved in team sports (soccer, team handball, basketball, and volleyball; 80% of men, and 75% of women), martial arts, gymnastics, and dance. Anthropometric variables consisted of body height, body weight, and the body mass index. Five agility tests were used: a t-test (T-TEST), zig-zag test, 20-yard shuttle test, agility test with a 180-degree turn, and forward-backward running agility test (FWDBWD). Other tests included 1 jumping ability power test (squat jump, SQJ), 2 balance tests to determine the overall stability index and an overall limit of stability score (both measured by Biodex Balance System), and 2 running speed tests using a straight sprint for 10 and 20 m (S10 and S20, respectively). A reliability analysis showed that all the agility tests were reliable. Multiple regression and correlation analysis found speed and power (among women), and balance (among men), as most significant predictors of agility. The highest Pearson's correlation in both genders is found between the results of the FWDBWD and S10M tests (0.77 and 0.81 for men and women, respectively; p< 0.05). Power, measured using the SQJ, is significantly (p < 0.05) related to FWDBWD and T-TEST results but only for women (-0.44; -0.41). The balance measures were significantly related to the agility performance for men but not for women. In addition to demonstrating a known relationship between speed and agility in both genders, and a small but statistically significant relationship between power and agility in women, these results indicate that balance should be considered as a potential predictor of agility in trained adult men.
The COVID-19 pandemic and the social distancing implemented shortly after influence physical activity levels (PALs). The purpose of this investigation was to evaluate the changes in PAL and factors associated with PALs among Croatian adolescents while considering the impact of community (urban vs. rural living environment). The sample included 823 adolescents (mean age: 16.5 ± 2.1 years) who were tested on baseline (from October 2019 to March 2020; before COVID-19 pandemic in Croatia) and follow-up (in April 2020; during the COVID-19 pandemic and imposed rules of social distancing). Baseline testing included anthropometrics, physical fitness status, and evaluation of PALs, while follow-up included only PALs (evaluated by a standardized questionnaire through an internet application). The results showed a significant influence of the living environment on the decrease of PAL, with a larger decrease in urban adolescents. Logistic regression showed a higher likelihood for normal PALs at baseline in adolescents who had better fitness status, with no strong confounding effect of the urban/rural environment. The fitness status of urban adolescents predicted their PALs at follow-up. The differences between urban and rural adolescents with regard to the established changes in PALs and relationships between the predictors and PALs are explained by the characteristics of the living communities (lack of organized sports in rural areas), and the level of social distancing in the studied period and region/country.
Background: Due to the COVID-19 pandemic, global authorities have imposed rules of social distancing that directly influence overall physical activity in populations. The aim of this study was to evaluate the trends of changes in physical-activity levels (PALs) in adolescents and factors that may be associated with PALs among the studied boys and girls. Methods: Participants in this prospective study comprised 388 adolescents (126 females; mean age: 16.4 ± 1.9 years) from southern Croatia who were tested at a baseline (before the imposed rules of social distancing) and at a follow-up measurement (three weeks after the initiation). Baseline testing included anthropometric variables, variables of fitness status (done at the beginning of the school year), and PALs. At the follow-up, participants were tested on PALs. PALs were evaluated over an online platform using the Physical Activity Questionnaire for Adolescents. Results: A significant decrease of PALs was evidenced for the total sample (t-test = 3.46, p < 0.001), which was primarily influenced by a significant decrease of PALs in boys (t-test = 5.15, p < 0.001). The fitness status (jumping capacity, abdominal strength, aerobic endurance, and anaerobic endurance) was systematically positively correlated with PALs at the baseline and follow-up among boys and girls, with the most evident association between aerobic and anaerobic endurance capacities and PALs. Correlations between anthropometric and fitness variables with changes in physical activity (e.g., the difference between baseline and follow-up PALs) were negligible. Conclusions: Differences in PAL changes between genders were probably related to the fact that PALs among boys were mostly related to participation in organized sports. Correlations between baseline fitness status and PALs indicated the importance of overall physical literacy in preserving PALs in challenging circumstances, such as the COVID-19 pandemic observed here.
Agility is a significant determinant of success in soccer; however, studies have rarely presented and evaluated soccer-specific tests of reactive agility (S_RAG) and non-reactive agility (change of direction speed – S_CODS) or their applicability in this sport. The aim of this study was to define the reliability and validity of newly developed tests of the S_RAG and S_CODS to discriminate between the performance levels of junior soccer players. The study consisted of 20 players who were involved at the highest national competitive rank (all males; age: 17.0 ± 0.9 years), divided into three playing positions (defenders, midfielders, and forwards) and two performance levels (U17 and U19). Variables included body mass (BM), body height, body fat percentage, 20-m sprint, squat jump, countermovement jump, reactive-strength-index, unilateral jump, 1RM-back-squat, S_CODS, and three protocols of S_RAG. The reliabilities of the S_RAG and S_CODS were appropriate to high (ICC: 0.70 to 0.92), with the strongest reliability evidenced for the S_CODS. The S_CODS and S_RAG shared 25–40% of the common variance. Playing positions significantly differed in BM (large effect-size differences [ES]; midfielders were lightest) and 1RM-back-squat (large ES; lowest results in midfielders). The performance levels significantly differed in age and experience in soccer; U19 achieved better results in the S_CODS (t-test: 3.61, p < 0.05, large ES) and two S_RAG protocols (t-test: 2.14 and 2.41, p < 0.05, moderate ES). Newly developed tests of soccer-specific agility are applicable to differentiate U17 and U19 players. Coaches who work with young soccer athletes should be informed that the development of soccer-specific CODS and RAG in this age is mostly dependent on training of the specific motor proficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.