IMPORTANCE Patients with breast cancer (BrCa) brain metastases (BrM) have limited therapeutic options. A better understanding of molecular alterations acquired in BrM could identify clinically actionable metastatic dependencies. OBJECTIVE To determine whether there are intrinsic subtype differences between primary tumors and matched BrM and to uncover BrM-acquired alterations that are clinically actionable. DESIGN, SETTING AND PARTICPANTS In total, 20 cases of primary breast cancer tissue and resected BrM (10 estrogen receptor [ER]-negative and 10 ER-positive) from 2 academic institutions were included. Eligible cases in the discovery cohort harbored patient-matched primary breast cancer tissue and resected BrM. Given the rarity of patient-matched samples, no exclusion criteria were enacted. Two validation sequencing cohorts were used—a published data set of 17 patient-matched cases of BrM and a cohort of 7884 BrCa tumors enriched for metastatic samples. MAIN OUTCOMES AND MEASURES Brain metastases expression changes in 127 genes within BrCa signatures, PAM50 assignments, and ERBB2/HER2 DNA-level gains. RESULTS Overall, 17 of 20 BrM retained the PAM50 subtype of the primary BrCa. Despite this concordance, 17 of 20 BrM harbored expression changes (<2-fold or >2-fold) in clinically actionable genes including gains of FGFR4 (n = 6 [30%]), FLT1 (n = 4 [20%]), AURKA (n = 2 [10%]) and loss of ESR1 expression (n = 9 [45%]). The most recurrent expression gain was ERBB2/HER2, which showed a greater than 2-fold expression increase in 7 of 20 BrM (35%). Three of these 7 cases were ERBB2/HER2-negative out of 13 ERBB2/HER2-negative in the primary BrCa cohort and became immunohistochemical positive (3+) in the paired BrM with metastasis-specific amplification of the ERBB2/HER2 locus. In an independent data set, 2 of 9 (22.2%) ERBB2/HER2-negative BrCa switched to ERBB2/HER2-positive with 1 BrM acquiring ERBB2/HER2 amplification and the other showing metastatic enrichment of the activating V777L ERBB2/HER2 mutation. An expanded cohort revealed that ERBB2/HER2 amplification and/or mutation frequency was unchanged between local disease and metastases across all sites; however, a significant enrichment was appreciated for BrM (13% local vs 24% BrM; P < .001). CONCLUSIONS AND RELEVANCE Breast cancer BrM commonly acquire alterations in clinically actionable genes, with metastasis-acquired ERBB2/HER2 alterations in approximately 20% of ERBB2/HER2-negative cases. These observations have immediate clinical implications for patients with ERBB2/HER2–negative breast cancer and support comprehensive profiling of metastases to inform clinical care.
RNA-seq profiling of longitudinally collected specimens uncovered recurrent gene expression acquisitions in metastatic tumors, distinct from matched primary tumors. Critically, we identify aberrations in key oncogenic pathways and provide functional evidence for their suitability as therapeutic targets. Altogether, this study establishes recurrent, acquired vulnerabilities in BrM that warrant immediate clinical investigation and suggests paired specimen expression profiling as a compelling and underutilized strategy to identify targetable dependencies in advanced cancers.
Spread of cancer to the brain remains an unmet clinical need in spite of the increasing number of cases among patients with lung, breast cancer, and melanoma most notably. Although research on brain metastasis was considered a minor aspect in the past due to its untreatable nature and invariable lethality, nowadays, limited but encouraging examples have questioned this statement, making it more attractive for basic and clinical researchers. Evidences of its own biological identity (i.e., specific microenvironment) and particular therapeutic requirements (i.e., presence of blood-brain barrier, blood-tumor barrier, molecular differences with the primary tumor) are thought to be critical aspects that must be functionally exploited using preclinical models. We present the coordinated effort of 19 laboratories to compile comprehensive information related to brain metastasis experimental models. Each laboratory has provided details on the cancer cell lines they have generated or characterized as being capable of forming metastatic colonies in the brain, as well as principle methodologies of brain metastasis research. The Brain Metastasis Cell Lines Panel (BrMPanel) represents the first of its class and includes information about the cell line, how tropism to the brain was established, and the behavior of each model in vivo. These and other aspects described are intended to assist investigators in choosing the most suitable cell line for research on brain metastasis. The main goal of this effort is to facilitate research on this unmet clinical need, to improve models through a collaborative environment, and to promote the exchange of information on these valuable resources.
The molecular events and transcriptional plasticity driving brain metastasis in clinically relevant breast tumor subtypes has not been determined. Here we comprehensively dissect genomic, transcriptomic and clinical data in patient-matched longitudinal tumor samples, and unravel distinct transcriptional programs enriched in brain metastasis. We report on subtype specific hub genes and functional processes, central to disease-affected networks in brain metastasis. Importantly, in luminal brain metastases we identify homologous recombination deficiency operative in transcriptomic and genomic data with recurrent breast mutational signatures A, F and K, associated with mismatch repair defects, TP53 mutations and homologous recombination deficiency (HRD) respectively. Utilizing PARP inhibition in patient-derived brain metastatic tumor explants we functionally validate HRD as a key vulnerability. Here, we demonstrate a functionally relevant HRD evident at genomic and transcriptomic levels pointing to genomic instability in breast cancer brain metastasis which is of potential translational significance.
Purpose: The use of aromatase inhibitors (AI) in the treatment of estrogen receptor (ER)-positive, postmenopausal breast cancer has proven efficacy. However, inappropriate activation of ER target genes has been implicated in the development of resistant tumors. The ER coactivator protein AIB1 has previously been associated with initiation of breast cancer and resistance to endocrine therapy.Experimental Design: Here, we investigated the role of AIB1 in the deregulation of ER target genes occurring as a consequence of AI resistance using tissue microarrays of patients with breast cancer and cell line models of resistance to the AI letrozole.Results: Expression of AIB1 associated with disease recurrence (P ¼ 0.025) and reduced disease-free survival time (P ¼ 0.0471) in patients treated with an AI as first-line therapy. In a cell line model of resistance to letrozole (LetR), we found ERa/AIB1 promoter recruitment and subsequent expression of the classic ER target genes pS2 and Myc to be constitutively upregulated in the presence of both androstenedione and letrozole. In contrast, the recruitment of the ERa/AIB1 transcriptional complex to the nonclassic ER target cyclin D1 and its subsequent expression remained sensitive to steroid treatment and could be inhibited by treatment with letrozole. Molecular studies revealed that this may be due in part to direct steroid regulation of c-jun-NH 2 -kinase (JNK), signaling to Jun and Fos at the cyclin D1 promoter.Conclusion: This study establishes a role for AIB1 in AI-resistant breast cancer and describes a new mechanism of ERa/AIB1 gene regulation which could contribute to the development of an aggressive tumor phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.