Zebrafish are becoming more widely used to study neurobehavioral pharmacology. We have developed a method to assess novel environment diving behavior of zebrafish as a model of stress response and anxiolytic drug effects. In a novel tank, zebrafish dwell in the bottom of the tank initially and then increase their swimming exploration to higher levels as the session progresses. We previously found that nicotine, which has anxiolytic effects in rodents and humans, significantly lessens the novel tank diving response in zebrafish. The specificity of the diving effect was validated with a novel vs. non-novel test tank. The novel tank diving response zebrafish was tested when given three anxiolytic drugs from two different chemical and pharmacological classes: buspirone, chlordiazepoxide and diazepam. When the test tank was novel the diving response was clearly seen where as it was significantly reduced when the test tank was not novel. Buspirone, a serotonergic (5HT 1A receptor agonist) anxiolytic drug with some D 2 dopaminergic effect, had a pronounced anxiolytic-like effect in the zebrafish diving model at doses that did not have sedative effects. In contrast, chlordiazepoxide, a benzodiazepine anxiolytic drug, which is an effective agonist at GABA-A receptors, did not produce signs of anxiolysis in zebrafish over a broad dose range up to those that caused sedation. Diazepam another benzodiazepine anxiolytic drug did produce an anxiolytic effect at doses that did not cause sedation. The zebrafish novel tank diving task can be useful in discriminating anxiolytic drugs of several classes (serotonergic, benzodiazepines and nicotinic).
Developmental exposure of rats to the pesticide chlorpyrifos (CPF) causes persistent neurobehavioral impairment. In a parallel series of studies with zebrafish, we have also found persisting behavioral dysfunction after developmental CPF exposure. We have developed a battery of measures of zebrafish behavior, which are reliable and sensitive to toxicant-induced damage. This study determined the critical duration of developmental CPF exposure for causing persisting neurobehavioral effects. Tests of sensorimotor response (tap startle response and habituation), stress response (novel tank diving test) and learning (3-chamber tank spatial discrimination) were conducted with adult zebrafish after early developmental CPF exposure. The CPF exposure level was 100 ng/ml with durations of 0-1, 0-2, 0-3, 0-4 and 0-5 days after fertilization. Developmental CPF exposure had persisting behavioral effects in zebrafish tested as adults. In the tactile startle test, CPF exposed fish showed decreased habituation to startle and a trend toward increased overall startle response. In the novel tank exploration test, exposed fish showed decreased escape diving response and increased swimming activity. In the 3-chamber learning test, the 0-5 day CPF exposure group had a significantly lower learning rate. There was evidence for persisting declines in brain dopamine and norepinepherine levels after developmental CPF exposure. In all of the measures the clearest persistent effects were seen in fish exposed for the full duration of five days after fertilization. In a follow-up experiment there were some indications for persisting behavioral effects after exposure during only the later phase of this developmental window. This study demonstrated the selective long-term neurobehavioral alterations caused by exposure to CPF in zebrafish. The zebrafish model can facilitate the determination of the molecular mechanisms underlying long-term neurobehavioral impairment after developmental toxicant exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.