For 50 years persistent cyanobacterial blooms have been observed in Lake Ludoš (Serbia), a wetland area of international significance listed as a Ramsar site. Cyanobacteria and cyanotoxins can affect many organisms, including valuable flora and fauna, such as rare and endangered bird species living or visiting the lake. The aim was to carry out monitoring, estimate the current status of the lake, and discuss potential resolutions. Results obtained showed: (a) the poor chemical state of the lake; (b) the presence of potentially toxic (genera Dolichospermum, Microcystis, Planktothrix, Chroococcus, Oscillatoria, Woronichinia and dominant species Limnothrix redekei and Pseudanabaena limnetica) and invasive cyanobacterial species Raphidiopsis raciborskii; (c) the detection of microcystin (MC) and saxitoxin (STX) coding genes in biomass samples; (d) the detection of several microcystin variants (MC-LR, MC-dmLR, MC-RR, MC-dmRR, MC-LF) in water samples; (e) histopathological alterations in fish liver, kidney and gills. The potential health risk to all organisms in the ecosystem and the ecosystem itself is thus still real and present. Although there is still no resolution in sight, urgent remediation measures are needed to alleviate the incessant cyanobacterial problem in Lake Ludoš to break this ecosystem out of the perpetual state of limbo in which it has been trapped for quite some time.
Lake Balaton is the largest shallow lake in Central Europe. Its water quality is affected by its biggest inflow, the Zala River. During late 20th century, a wetland area named the Kis-Balaton Water Protection System (KBWPS) was constructed in the hopes that it would act as a filter zone and thus ameliorate the water quality of Lake Balaton. The aim of the present study was to test whether the KBWPS effectively safeguards Lake Balaton against toxic cyanobacterial blooms. During April, May, July and September 2018, severe cyanobacterial blooming was observed in the KBWPS with numbers reaching up to 13 million cells/mL at the peak of the bloom (July 2018). MC- and STX-coding genes were detected in the cyanobacterial biomass. Five out of nine tested microcystin congeners were detected at the peak of the bloom with the concentrations of MC-LR reaching 1.29 µg/L; however, accumulation of MCs was not detected in fish tissues. Histopathological analyses displayed severe hepatopancreas, kidney and gill alterations in fish obtained throughout the investigated period. In Lake Balaton, on the other hand, cyanobacterial numbers were much lower; more than 400-fold fewer cells/mL were detected during June 2018 and cyanotoxins were not detected in the water. Hepatic, kidney and gill tissue displayed few alterations and resembled the structure of control fish. We can conclude that the KBWPS acts as a significant buffering zone, thus protecting the water quality of Lake Balaton. However, as MC- and STX-coding genes in the cyanobacterial biomass were detected at both sites, regular monitoring of this valuable ecosystem for the presence of cyanobacteria and cyanotoxins is of paramount importance.
Eutrophicated waters frequently support bloom-forming cyanobacteria, many of which produce potent cyanobacterial toxins (cyanotoxins). Cyanotoxins can cause adverse health effects in a wide range of organisms where the toxins may target the liver, other internal organs, mucous surfaces and the skin and nervous system. This review surveyed more than 100 studies concerning the cardiovascular toxicity of cyanotoxins and related topics. Over 60 studies have described various negative effects on the cardiovascular system by seven major types of cyanotoxins, i.e. the microcystin (MC), nodularin (NOD), cylindrospermopsin (CYN), anatoxin (ATX), guanitoxin (GNTX), saxitoxin (STX) and lyngbyatoxin (LTX) groups. Much of the research was done on rodents and fish using high, acutely toxin concentrations and unnatural exposure routes (such as intraperitoneal injection), and it is thus concluded that the emphasis in future studies should be on oral, chronic exposure of mammalian species at environmentally relevant concentrations. It is also suggested that future in vivo studies are conducted in parallel with studies on cells and tissues. In the light of the presented evidence, it is likely that cyanotoxins do not constitute a major risk to cardiovascular health under ordinary conditions met in everyday life. The risk of illnesses in other organs, in particular the liver, is higher under the same exposure conditions. However, adverse cardiovascular effects can be expected due to indirect effects arising from damage in other organs. In addition to risks related to extraordinary concentrations of the cyanotoxins and atypical exposure routes, chronic exposure together with co-existing diseases could make some of the cyanotoxins more dangerous to cardiovascular health.
Cyanobacteria are ancient photosynthetic microorganisms that shaped today's atmosphere. Anthropocentric and irresponsible activities are changing the atmosphere which favor the frequent occurrence and mass development of cyanobacteria. Extensive cyanobacterial blooming causes numerous problems, including negative effects on human skin. Climate change, depletion of ozone layer, and the increased ultraviolet radiation also affect the skin and lead to more frequent occurrence of skin cancer. This research, for the first time, attempts to establish a connection between these two factors, or whether, in addition to ultraviolet radiation, cyanobacteria can influence the incidence of melanoma. With this objective in mind, an epidemiological investigation was conducted in Vojvodina, Serbia. It was observed that the incidence of melanoma was higher in municipalities where water bodies used for recreation, irrigation and fishing are blooming; however, results could be considered as inconclusive, because of the restrictions in the cancer database. Nevertheless, results gathered from the reviewed literature support the hypothesis that cyanobacteria could be a new potential risk factor for melanoma, while climate change could be a catalyst that converts these potential risk factors into cofactors, which act synergistically with the main risk factor – ultraviolet radiation – and induce an increase of melanoma incidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.