Ionic liquids (ILs) offer outstanding possibilities as media for manufacturing nanoparticles. Synthesis conditions with high reaction and nucleation rates are achievable leading to the formation of extremely small particles. The IL itself can act as an electronic as well as a steric stabiliser preventing particle growth and particle aggregation. In addition, as highly structured liquids, ILs have a strong effect on the morphology of the particles formed. We have developed two synthesis techniques for the generation of metal nanoparticles that take advantage of the unique properties that ILs offer when compared to conventional volatile organic solvents (VOCs): microwave (MW) synthesis and physical vapour deposition (PVD). The ionic character and high polarisability of the IL renders it highly susceptible to energy uptake via MWs and extreme heating and reaction rates can be achieved. To make full use of the possibilities that ILs offer we have designed a set of reducing ILs which can be used as direct reaction partners for the generation of metal nanoparticles. The negligible vapour pressure of many ILs makes experiments under high vacuum possible and allows for the PVD of metals into ILs. magnified imagePhysical vapour deposition (left) and microwave synthesis of metal nanoparticles in ILs.
In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO2(2+) unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim to establish structure-property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. These materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.