A little-appreciated feature of early pregnancy is that embryo implantation and placental outgrowth do not evoke wound-healing responses in the decidua, the specialized endometrial tissue that surrounds the conceptus. Here, we provide evidence that this phenomenon is partly due to an active program of gene silencing mediated by EZH2, a histone methyltransferase that generates repressive histone 3 lysine 27 trimethyl (H3K27me3) histone marks. We find that pregnancies in mice with EZH2-deficient decidual stromal cells frequently fail by mid-gestation, with the decidua showing ectopic myofibroblast formation, peri-embryonic collagen deposition, and gene expression profiles associated with transforming growth factor b (TGF-b)-driven fibroblast activation and fibrogenic extracellular matrix (ECM) remodeling. Analogous responses are observed when the mutant decidua is surgically wounded, while blockade of TGF-b receptor signaling inhibits the defects and improves reproductive outcomes. Together, these results highlight a critical feature of reproductive success and have implications for the context-specific control of TGF-b-mediated wound-healing responses elsewhere in the body.
Poly(ADP-ribose)
polymerases, PARPs, transfer ADP-ribose onto target
proteins from nicotinamide adenine dinucleotide (NAD
+
).
Current mass spectrometric analytical methods require proteolysis
of target proteins, limiting the study of dynamic ADP-ribosylation
on contiguous proteins. Herein, we present a matrix-assisted laser
desorption/ionization time-of-flight (MALDI-TOF) method that facilitates
multisite analysis of ADP-ribosylation. We observe divergent ADP-ribosylation
dynamics for the catalytic domains of PARPs 14 and 15, with PARP15
modifying more sites on itself (+3–4 ADP-ribose) than the closely
related PARP14 protein (+1–2 ADP-ribose)—despite similar
numbers of potential modification sites. We identify, for the first
time, a minimal peptide fragment (18 amino-acids) that is preferentially
modified by PARP14. Finally, we demonstrate through mutagenesis and
chemical treatment with hydroxylamine that PARPs 14/15 prefer acidic
residues. Our results highlight the utility of MALDI-TOF in the analysis
of PARP target modifications and in elucidating the biochemical mechanism
governing PARP target selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.