The mineral in bone is located primarily within the collagen fibril, and during mineralization the fibril is formed first and then water within the fibril is replaced with mineral. The collagen fibril therefore provides the aqueous compartment in which mineral grows. Although knowledge of the size of molecules that can diffuse into the fibril to affect crystal growth is critical to understanding the mechanism of bone mineralization, there have been as yet no studies on the size exclusion properties of the collagen fibril. To determine the size exclusion characteristics of collagen, we developed a gel filtration-like procedure that uses columns containing collagen from tendon and bone. The elution volumes of test molecules show the volume within the packed column that is accessible to the test molecules, and therefore reveal the size exclusion characteristics of the collagen within the column. These experiments show that molecules smaller than a 6-kDa protein diffuse into all of the water within the collagen fibril, whereas molecules larger than a 40-kDa protein are excluded from this water. These studies provide an insight into the mechanism of bone mineralization. Molecules and apatite crystals smaller than a 6-kDa protein can diffuse into all water within the fibril and so can directly impact mineralization. Although molecules larger than a 40-kDa protein are excluded from the fibril, they can initiate mineralization by forming small apatite crystal nuclei that diffuse into the fibril, or can favor fibril mineralization by inhibiting apatite growth everywhere but within the fibril.
One of our goals is to understand the mechanisms that deposit mineral within collagen fibrils, and as a first step we recently determined the size exclusion characteristics of the fibril. This study revealed that apatite crystals up to 12 unit cells in size can access the water within the fibril, whereas molecules larger than a 40-kDa protein are excluded. Based on these observations, we proposed a novel mechanism for fibril mineralization: that macromolecular inhibitors of apatite growth favor fibril mineralization by selectively inhibiting crystal growth in the solution outside of the fibril. To test this mechanism, we developed a system in which crystal formation is driven by homogeneous nucleation at high calcium phosphate concentration and the only macromolecule in solution is fetuin, a 48-kDa inhibitor of apatite growth. Our experiments with this system demonstrated that fetuin determines the location of mineral growth; in the presence of fetuin mineral grows exclusively within the fibril, whereas in its absence mineral grows in solution outside the fibril. Additional experiments showed that fetuin is also able to localize calcification to the interior of synthetic matrices that have size exclusion characteristics similar to those of collagen and that it does so by selectively inhibiting mineral growth outside of these matrices. We termed this new calcification mechanism "mineralization by inhibitor exclusion," the selective mineralization of a matrix using a macromolecular inhibitor of mineral growth that is excluded from that matrix. Future studies will be needed to evaluate the possible role of this mechanism in bone mineralization.
The mineral in bone is located primarily within the collagen fibril, and during mineralization the fibril is formed first and then water within the fibril is replaced with mineral. Our goal is to understand the mechanism of fibril mineralization, and as a first step we recently determined the size exclusion characteristics of the fibril. This study indicates that apatite crystals up to 12 unit cells in size can access the water within the fibril while molecules larger than a 40-kDa protein are excluded. We proposed a novel mechanism for fibril mineralization based on these observations, one that relies exclusively on agents excluded from the fibril. One agent generates crystals outside the fibril, some of which diffuse into the fibril and grow, and the other selectively inhibits crystal growth outside of the fibril. We have tested this mechanism by examining the impact of removing the major serum inhibitor of apatite growth, fetuin, on the serum-induced calcification of collagen. The results of this test show that fetuin determines the location of serum-driven mineralization: in fetuin's presence, mineral forms only within collagen fibrils; in fetuin's absence, mineral forms only in solution outside the fibrils. The X-ray diffraction spectrum of serum-induced mineral is comparable to the spectrum of bone crystals. These observations show that serum calcification activity consists of an as yet unidentified agent that generates crystal nuclei, some of which diffuse into the fibril, and fetuin, which favors fibril mineralization by selectively inhibiting the growth of crystals outside the fibril.
Bone is a hierarchically structured composite consisting of a protein phase (type I collagen) and a mineral phase (carbonated apatite). The objective of this study was to investigate the hierarchical structure of mineral in mature bone. A method to completely deproteinize bone without altering the original structure is developed, and the completion is confirmed by protein analysis techniques. Stereoscopy and field emission electron microscopy are used to examine the structural features from submillimeter- to micrometer- to nanometer-length scales of bovine femur cancellous bone. Stereoscopic images of fully deproteinized and demineralized bovine femur cancellous bone samples show that fine trabecular architecture is unaltered and the microstructural features are preserved, indicating the structural integrity of mineral and protein constituents. SEM revealed that bone minerals are fused together and form a sheet-like structure in a coherent manner with collagen fibrils. Well-organized pore systems are observed at varying hierarchical levels. Mineral sheets are peeled off and folded after compressive deformation, implying strong connection between individual crystallites. Results were compared with commercially available heat-deproteinized bone (Bio-Oss®), and evidence showed consistency in bone mineral structure. A two-phase interpenetrating composite model of mature bone is proposed and discussed.
Previous studies have shown that the type I collagen of tendon and demineralized bone both calcify rapidly in serum. The speed, collagen matrix-type specificity, and extent of the re-calcification of demineralized bone in serum suggest that the serum calcification activity identified in these studies may participate in normal biomineralization. Because of its presence in serum and its long history of association with the normal mineralization of the collagen matrix of bone, tissue-nonspecific alkaline phosphatase (TNAP) is an obvious candidate for a protein that could be a component of serum calcification activity, and experiments were therefore carried out to test this possibility. These experiments show that the inactivation of TNAP in serum prevents collagen calcification, and that the addition of physiological levels of purified TNAP restores the ability of TNAP-deficient serum to calcify collagen. Additional experiments show that the role of TNAP in collagen calcification is to activate a serum nucleator of apatite crystal formation. Based on these and earlier studies, the mechanism of collagen calcification in serum requires at least four elements as follows. Our goal is to understand the biochemical mechanism responsible for the calcification of collagen fibrils in normal bone formation. In the course of our investigations, we have discovered that purified type I collagen and demineralized bone matrix both calcify rapidly when incubated in serum in the absence of cells (1-4). The calcification of collagen is because of the presence of a serum calcification activity, one sufficiently potent that collagen calcifies when incubated in media containing as little as 1.5% serum but not in serum-free media alone (1-4). This serum calcification activity consists of one or more proteins that are 50 -150 kDa in size (3, 4).Although serum-driven collagen calcification is an in vitro, cell-free assay, there are several reasons to believe that it could be relevant to understanding mechanisms by which collagen fibrils are mineralized in nature. 1) The assay conditions are physiologically relevant; collagen added to serum calcifies when incubated at the temperature and pH of mammalian blood, without the need to add anything to serum to promote mineralization, such as -glycerophosphate or phosphate (see Ref. 1 and references therein). 2) Serum is relevant to bone mineralization; osteoblasts form bone in a vascular compartment (5), and proteins in serum have direct access to the site of collagen fibril formation and mineralization, whereas proteins secreted by the osteoblast appear rapidly in serum. 3) Serum-driven calcification is evolutionarily conserved; the serum calcification activity appeared in animals at the time vertebrates acquired the ability to form calcium phosphate mineral structures, with no evidence for a similar activity in the serum of invertebrates (2). 4) Serum-driven calcification is specific; calcification is restricted to those structures that were calcified in bone prior to demineralization, with n...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.