Modeling chemical durability of high level waste glass for nuclear waste processing using bootstrap aggregated neural networks is studied in this paper. In order to overcome the difficulty in developing detailed mechanistic models, data driven neural network models are developed from experimental data. A key issue in building neural network models is that model generalization capability cannot be guaranteed due to the potential over-fitting problem and the limitation in the training data. In order to enhance model generalization, bootstrap aggregated neural networks are used in this study. Multiple neural network models are developed from bootstrap resampling replications of the original training data and are combined to give the final prediction. Application results show that accurate and reliable models can be developed using bootstrap aggregated neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.