In certain areas of the Norwegian waters, shallow pressurized sands containing either gas or water occasionally create problems during drilling and surface casing installation. In 2018, an operator drilled three wells in the Norwegian waters with such special challenges. In this case the challenge was water flow but not gas. The NORSOK D010 shallow gas flow potential was classified as zero. Each of the wells had a shallow water flow challenge in an over-pressured sand that normally would require setting a shallow 20-in. surface casing and a riser installation before passing the zone to enable controlling the pressure on the sands using weighted drilling fluid; also requiring a 17-in. liner installation to cover the sand before further drilling. If the surface casing could be set deep enough to cover the over-pressurized sands, substantial savings could be obtained on each well by eliminating the need for an additional section and installation of an extra liner or casing. Furthermore, a deeper-set surface casing would reduce the risk of not obtaining an adequate leak-off test below the shoe. A deep-set surface casing would also allow for down-scaling the well from 20-in. to 13-3/8-in. surface casing. A riserless drilling fluid return system allows for controlling the pressure while drilling, but this has to be turned off during cementing as cement is expected in returns. The use of conventional cement systems would potentially put the well in under-balance for a substantial period of time and consequently potentially result in a water-flow situation requiring a re-spud, as has been the case for a reference well in the area in which substantial downtime was experienced due to water flow after cementing the surface casing. The solution was a riserless drilling fluid return system during drilling, followed by a tailored cement solution. A tailored spacer and foam cement system were deployed; the short transition time of the cement and the inherent compressibility of foams both reduced the exposure time in under-balance. The solution was successfully deployed on all three wells with no flow observed post placement. This paper will detail this successful case study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.