In this paper, we propose a comprehensive analytics framework that can serve as a decision support tool for HR recruiters in real-world settings in order to improve hiring and placement decisions. The proposed framework follows two main phases: a local prediction scheme for recruitments' success at the level of a single job placement, and a mathematical model that provides a global recruitment optimization scheme for the organization, taking into account multilevel considerations. In the first phase, a key property of the proposed prediction approach is the interpretability of the machine learning (ML) model, which in this case is obtained by applying the Variable-Order Bayesian Network (VOBN) model to the recruitment data. Specifically, we used a uniquely large dataset that contains recruitment records of hundreds of thousands of employees over a decade and represents a wide range of heterogeneous populations. Our analysis shows that the VOBN model can provide both high accuracy and interpretability insights to HR professionals. Moreover, we show that using the interpretable VOBN can lead to unexpected and sometimes counter-intuitive insights that might otherwise be overlooked by recruiters who rely on conventional methods.We demonstrate that it is feasible to predict the successful placement of a candidate in a specific position at a pre-hire stage and utilize predictions to devise a global optimization model. Our results show that in comparison to actual recruitment decisions, the devised framework is capable of providing a balanced recruitment plan while improving both diversity and recruitment success rates, despite the inherent trade-off between the two.
PurposeWhat do antecedents of turnover tell us when examined using human resources (HR) analytics and machine-learning tools, and what are the respective theoretical and practical implications? Although the turnover literature is expansive, empirical evidence on turnover antecedents studied using data science tools remains limited.Design/methodology/approachTo help reinvigorate research in this field, the authors propose a novel examination of turnover antecedents—competencies, commitment, trust and cultural values—using big data tools to develop a granular, case-dependent measure of turnover.FindingsUsing archival data from 700,000 employees of a large organization collected over a period of ten years, the authors find that turnover is generally associated with varying levels of these antecedents. However, in more fine-grained analysis, their relation to turnover is contingent upon role, person and cultural background.Originality/valueThe authors discuss the implications on turnover and strategic HR research and the potential of Artificial Intelligence and machine-learning methods in the design and implementation of managerial and HR planning initiatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.