Ocean waves are complex and often turbulent. While most ocean-wave interactions are essentially linear, sometimes two or more waves interact in a nonlinear way. For example, two or more waves can interact and yield waves that are much taller than the sum of the original wave heights. Most of these shallow-water nonlinear interactions look like an X or a Y or two connected Ys; at other times, several lines appear on each side of the interaction region. It was thought that such nonlinear interactions are rare events: they are not. Here we report that such nonlinear interactions occur every day, close to low tide, on two flat beaches that are about 2000 km apart. These interactions are closely related to the analytic, soliton solutions of a widely studied multidimensional nonlinear wave equation. On a much larger scale, tsunami waves can merge in similar ways.
A new algorithm is presented to find exact traveling wave solutions of differentialdifference equations in terms of tanh functions. For systems with parameters, the algorithm determines the conditions on the parameters so that the equations might admit polynomial solutions in tanh.Examples illustrate the key steps of the algorithm. Parallels are drawn through discussion and example to the tanh-method for partial differential equations.The new algorithm is implemented in Mathematica. The package DDESpecialSolutions.m can be used to automatically compute traveling wave solutions of nonlinear polynomial differential-difference equations. Use of the package, implementation issues, scope, and limitations of the software are addressed.
Program summary
Algorithms are presented for the tanh-and sech-methods, which lead to closed-form solutions of nonlinear ordinary and partial differential equations (ODEs and PDEs). New algorithms are given to find exact polynomial solutions of ODEs and PDEs in terms of Jacobi's elliptic functions.For systems with parameters, the algorithms determine the conditions on the parameters so that the differential equations admit polynomial solutions in tanh, sech, combinations thereof, Jacobi's sn or cn functions. Examples illustrate key steps of the algorithms.The new algorithms are implemented in Mathematica. The package PDESpecialSolutions.m can be used to automatically compute new special solutions of nonlinear PDEs. Use of the package, implementation issues, scope, limitations, and future extensions of the software are addressed.A survey is given of related algorithms and symbolic software to compute exact solutions of nonlinear differential equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.