We use a prestack depth migration reflection image and magnetic anomaly data across the northern Hikurangi subduction zone, New Zealand, to constrain plate boundary structure and geometry of a subducting seamount in a region of shallow slow slip and recent International Ocean Discovery Program drilling. Our 3‐D model reveals the subducting seamount as a SW‐NE striking, lozenge‐shaped ridge approximately 40 km long and 15 km wide, with relief up to 2.5 km. This seamount broadly correlates with a 20‐km‐wide gap separating two patches of large (>10 cm) slow slip and the locus of tectonic tremor associated with the September–October 2014 Gisborne slow slip event. Largest slow slip magnitudes occurred where the décollement is underlain by a 3.0‐km‐thick zone of highly reflective subducting sediments. Wave speeds within this zone are 7% lower than adjacent and overlying strata, supporting the view that high fluid pressures within subducting sediments may facilitate shallow slow slip along the north Hikurangi margin.
An ensemble averaging technique is used to remove the long-wavelength topography and gravity field from subduction zones. >200 residual bathymetric and gravimetric anomalies are interpreted within fore arcs, many of which are attributed to the tectonic structure of the subducting plate. The residual-gravimetric expression of subducting fracture zones extends >200 km landward of the trench axis. The bathymetric expression of subducting seamounts with height 1 km and area 500 km 2 (N536), and aseismic ridges (N>10), is largest near the trench (within 70 km) and above shallow subducting slab depths (SLAB1.0 <17 km). Subducting seamounts are similar in wavelength, amplitude, and morphology to unsubducted seamounts. Morphology, spatial distributions, and reduced levels of seismicity are considered inconsistent with mechanical models proposing wholesale decapitation, and the association of subducting seamounts with large-earthquakes. Subducting aseismic ridges are associated with uplift and steepening of the outer fore arc, a gradual reduction in residual bathymetric expression across the inner fore arc, and a local increase in the width and elevation of the volcanic-arc/orogen. These contrasting expressions reflect the influence of margin-normal variations in rigidity on where and how the upper plate deforms, both to accommodate subducting relief and in response to stresses transmitted across the plate interface. The outer fore arc and arc have lower rigidity due to fracturing and thermal weakening, respectively. Similar associations with complex earthquakes and fault creep suggest aseismic ridge subduction may also be accommodated by the development and evolution of a broad fracture network, the geometrical strength of which may exceed the locking strength of a smooth fault.
We use seismic reflection and refraction data to determine crustal structure, to map a fore‐arc basin containing 12 km of sediment, and to image the subduction thrust at 35 km depth. Seismic reflection megasequences within the basin are correlated with onshore geology: megasequence X, Late Cretaceous and Paleogene marine passive margin sediments; megasequence Y, a ∼10,000 km3 submarine landslide emplaced during subduction initiation at 22 Ma; and megasequence Z, a Neogene subduction margin megasequence. The Moho lies at 17 km beneath the basin center and at 35 km at the southern margin. Beneath the western basin margin, we interpret reflective units as deformed Gondwana fore‐arc sediment that was thrust in Cretaceous time over oceanic crust 7 km thick. Raukumara Basin has normal faults at its western margin and is uplifted along its eastern and southern margins. Raukumara Basin represents a rigid fore‐arc block >150 km long, which contrasts with widespread faulting and large Neogene vertical axis rotations farther south. Taper of the western edge of allochthonous unit Y and westward thickening and downlap of immediately overlying strata suggest westward or northwestward paleoslope and emplacement direction rather than southwestward, as proposed for the correlative onshore allochthon. Spatial correlation between rock uplift of the eastern and southern basin margins with the intersection between Moho and subduction thrust leads us to suggest that crustal underplating is modulated by fore‐arc crustal thickness. The trench slope has many small extensional faults and lacks coherent internal reflections, suggesting collapse of indurated rock, rather than accretion of >1 km of sediment from the downgoing plate. The lack of volcanic intrusion east of the active arc, and stratigraphic evidence for the broadening of East Cape Ridge with time, suggests net fore‐arc accretion since 22 Ma. We propose a cyclical fore‐arc kinematic: rock moves down a subduction channel to near the base of the crust, where underplating drives rock uplift, oversteepens the trench slope, and causes collapse toward the trench and subduction channel. Cyclical rock particle paths led to persistent trench slope subsidence during net accretion. Existing global estimates of fore‐arc loss are systematically too high because they assume vertical particle paths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.