In current design practice, typical seismic design of bridges tends to use simplified approaches. On the opposite side, the most advanced seismic analyses currently used in practice in all the fields of structural engineering are probably the ones used for the design of nuclear facilities, which include soil–structure interaction and motion incoherency effects. From that category, the most modern methodology is the probabilistic approach, which has been added to the new ASCE 4 standard. This type of state-of-the-art analysis is carried out in ACS SASSI software on a typical concrete bridge structure with deep foundations. A comparison of the results with the deterministic SSI approach and the typical Eurocode design from previous studies is presented at the end. Major differences in behavior are highlighted, which impact the overall safety of the structure.
As a general trend, in order to reduce material consumption or to reduce the mass of the structures, composite floor slabs solutions are used to achieve large spans floor slabs. This solutions led to floors sensitive to vibrations induced generally by human activities. As a verification of the design concepts of the composite floors, usually, it is recommended a further examination of the floor after completion by experimental tests. Although the experimental values of the dynamic response of the floor are uniquely determined, the processing can take two directions of evaluation. The first direction consist in determining the dynamic characteristics of the floor and their comparison with the design values. Another way that can be followed in the processing of the experimental results is to consider the human perception and comfort to the vibration on floors. The paper aims to present a case study on a composite floor, with steel beams and concrete slab, tested on-site. Both aspects of data processing are analyzed, in terms of the structural element, and in terms of the effect on human perception and comfort. Experimentally obtained values for the dynamic characteristics of the floor are compared with numerical values from finite element analysis, while the second type of characteristic values are compared with various human comfort threshold values found in international standards.
This paper presents an analytical study which deals with the behavior of the circular plates in bending theory, considering the soil-structure interaction under Winkler's hypothesis. It was intended to illustrate the variation of internal forces and deformations according to the flexibility coefficient of plates considering three models: a fixed solid circular plate subjected to a uniformly distributed load, a fixed solid circular plate acted by a displacement applied on the exterior contour and a solid plate subjected to a temperature gradient. For this study the computation relations were written as a product between a dimensional and a non-dimensional factor, the last one indicating the variation of internal forces and deformations. For each type of action there are presented results obtained using the finite element method to illustrate the differences between this method and the analytical computation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.