The kinetic parameters of enzymes are key to understanding the rate and specificity of most biological processes. Although specific trends are frequently studied for individual enzymes, global trends are rarely addressed. We performed an analysis of k(cat) and K(M) values of several thousand enzymes collected from the literature. We found that the "average enzyme" exhibits a k(cat) of ~0 s(-1) and a k(cat)/K(M) of ~10(5) s(-1) M(-1), much below the diffusion limit and the characteristic textbook portrayal of kinetically superior enzymes. Why do most enzymes exhibit moderate catalytic efficiencies? Maximal rates may not evolve in cases where weaker selection pressures are expected. We find, for example, that enzymes operating in secondary metabolism are, on average, ~30-fold slower than those of central metabolism. We also find indications that the physicochemical properties of substrates affect the kinetic parameters. Specifically, low molecular mass and hydrophobicity appear to limit K(M) optimization. In accordance, substitution with phosphate, CoA, or other large modifiers considerably lowers the K(M) values of enzymes utilizing the substituted substrates. It therefore appears that both evolutionary selection pressures and physicochemical constraints shape the kinetic parameters of enzymes. It also seems likely that the catalytic efficiency of some enzymes toward their natural substrates could be increased in many cases by natural or laboratory evolution.
Turnover numbers, also known as k cat values, are fundamental properties of enzymes. However, k cat data are scarce and measured in vitro, thus may not faithfully represent the in vivo situation. A basic question that awaits elucidation is: how representative are k cat values for the maximal catalytic rates of enzymes in vivo? Here, we harness omics data to calculate k vivo max , the observed maximal catalytic rate of an enzyme inside cells. Comparison with k cat values from Escherichia coli, yields a correlation of r 2 = 0.62 in log scale (p < 10 −10 ), with a root mean square difference of 0.54 (3.5-fold in linear scale), indicating that in vivo and in vitro maximal rates generally concur. By accounting for the degree of saturation of enzymes and the backward flux dictated by thermodynamics, we further refine the correspondence between k vivo max and k cat values. The approach we present here characterizes the quantitative relationship between enzymatic catalysis in vitro and in vivo and offers a highthroughput method for extracting enzyme kinetic constants from omics data. (1-6). Many models of cellular metabolism include k cat values, the maximal turnover rates of enzymes, as key inputs to predict the behavior of metabolic pathways and networks (7-9). However, most values have never been measured experimentally. Escherichia coli is the most intensely biochemically characterized organism, but k cat values are available for only about 10% of its ≈ 2, 000 enzyme-reaction pairs (Dataset S1). Indeed, k cat values are missing for several central metabolic enzymes. The scarcity of kinetic data limits the scope of models and necessitates generic parameter assignments that significantly reduce the predictive power of cellular models.Even if a larger collection of k cat values was made available, their current use poses a major difficulty: k cat values are measured through in vitro enzyme assays, representing the initial rate of the reaction, i.e., full substrates saturation and negligible levels of products. Such assays may underrepresent factors like cellular metabolite concentrations, thermodynamic constraints, posttranslational modifications, chaperones, cellular crowding, and activating and inhibiting molecules, which can substantially alter enzyme kinetics in vivo. These omissions call into question the relevance of k cat measurements in vivo (10-12). Furthermore, an effort to measure a large number of k cat values under in vivo-like conditions presents a daunting challenge, given how many unknown biochemical factors might be involved.Several studies grapple with missing k cat values by sampling from the distribution of k cat values measured in vitro or by using measurements of the same enzyme from related species (13-16). These approximations systematically ignore any errors resulting from the differences between in vitro and in vivo environments. Approximations of this sort may also introduce significant errors, as k cat values can deviate by orders of magnitude between isozymes in the same organism as well a...
Bacterial growth depends crucially on metabolic fluxes, which are limited by the cell’s capacity to maintain metabolic enzymes. The necessary enzyme amount per unit flux is a major determinant of metabolic strategies both in evolution and bioengineering. It depends on enzyme parameters (such as kcat and KM constants), but also on metabolite concentrations. Moreover, similar amounts of different enzymes might incur different costs for the cell, depending on enzyme-specific properties such as protein size and half-life. Here, we developed enzyme cost minimization (ECM), a scalable method for computing enzyme amounts that support a given metabolic flux at a minimal protein cost. The complex interplay of enzyme and metabolite concentrations, e.g. through thermodynamic driving forces and enzyme saturation, would make it hard to solve this optimization problem directly. By treating enzyme cost as a function of metabolite levels, we formulated ECM as a numerically tractable, convex optimization problem. Its tiered approach allows for building models at different levels of detail, depending on the amount of available data. Validating our method with measured metabolite and protein levels in E. coli central metabolism, we found typical prediction fold errors of 4.1 and 2.6, respectively, for the two kinds of data. This result from the cost-optimized metabolic state is significantly better than randomly sampled metabolite profiles, supporting the hypothesis that enzyme cost is important for the fitness of E. coli. ECM can be used to predict enzyme levels and protein cost in natural and engineered pathways, and could be a valuable computational tool to assist metabolic engineering projects. Furthermore, it establishes a direct connection between protein cost and thermodynamics, and provides a physically plausible and computationally tractable way to include enzyme kinetics into constraint-based metabolic models, where kinetics have usually been ignored or oversimplified.
Proteomics techniques generate an avalanche of data and promise to satisfy biologists' long-held desire to measure absolute protein abundances on a genome-wide scale. However, can this knowledge be translated into a clearer picture of how cells invest their protein resources? This article aims to give a broad perspective on the composition of proteomes as gleaned from recent quantitative proteomics studies. We describe proteomaps, an approach for visualizing the composition of proteomes with a focus on protein abundances and functions. In proteomaps, each protein is shown as a polygon-shaped tile, with an area representing protein abundance. Functionally related proteins appear in adjacent regions. General trends in proteomes, such as the dominance of metabolism and protein production, become easily visible. We make interactive visualizations of published proteome datasets accessible at www.proteomaps.net. We suggest that evaluating the way protein resources are allocated by various organisms and cell types in different conditions will sharpen our understanding of how and why cells regulate the composition of their proteomes.Voronoi treemap | functional classification | mass spectrometry | cell resource allocation | cellular economy
SummaryCan a heterotrophic organism be evolved to synthesize biomass from CO2 directly? So far, non-native carbon fixation in which biomass precursors are synthesized solely from CO2 has remained an elusive grand challenge. Here, we demonstrate how a combination of rational metabolic rewiring, recombinant expression, and laboratory evolution has led to the biosynthesis of sugars and other major biomass constituents by a fully functional Calvin-Benson-Bassham (CBB) cycle in E. coli. In the evolved bacteria, carbon fixation is performed via a non-native CBB cycle, while reducing power and energy are obtained by oxidizing a supplied organic compound (e.g., pyruvate). Genome sequencing reveals that mutations in flux branchpoints, connecting the non-native CBB cycle to biosynthetic pathways, are essential for this phenotype. The successful evolution of a non-native carbon fixation pathway, though not yet resulting in net carbon gain, strikingly demonstrates the capacity for rapid trophic-mode evolution of metabolism applicable to biotechnology.PaperClip
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.