The study of disease processes requires a number of tools for detection of proteins and biomarkers in cell and animal based assays. Near infrared (NIR) technologies offer the advantage of high signal without interference from background producing factors such as tissues, blood, or plastics. NIR fluorescence quenching biochemical assays employing a novel NIR quencher are homogeneous and sensitive. NIR-based immunocytochemical assays offer a means of quantitatively evaluating cell signaling pathways. The technology can be extended to the development of targeted molecular imaging agents for disease analysis in animal models. We describe here model assays for each of these categories. A fluorescence quenching caspase-3 assay was developed employing a novel, broadly applicable quencher dye suitable for use with both visible and NIR dye chemistries. An NIR cell based assay is described for assessment of phosphorylation of p53 in response to a cellular stimulus. Finally, we describe the development and application of a targeted NIR optical imaging agent for monitoring tumor growth in whole animals. The NIR biochemical and cell based assays are robust with Z' factors greater than 0.7. The use of an IRDye ® 800CW-labeled cyclic RGD peptide is presented as a model for development and application of targeted imaging agents. NIR technologies are compatible with the complete spectrum of assay needs for disease analysis and therapeutic development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.