Hidden Markov model speech recognition systems typically use Gaussian mixture models to estimate the distributions of decorrelated acoustic feature vectors that correspond to individual subword units. By contrast, hybrid connectionist-HMM systems use discriminatively-trained neural networks to estimate the probability distribution among subword units given the acoustic observations. In this work we show a large improvement in word recognition performance by combining neural-net discriminative feature processing with Gaussian-mixture distribution modeling. By training the network to generate the subword probability posteriors, then using transformations of these estimates as the base features for a conventionally-trained Gaussian-mixture based system, we achieve relative error rate reductions of 35% or more on the multicondition Aurora noisy continuous digits task.
No abstract
The “cocktail party problem” requires us to discern individual sound sources from mixtures of sources. The brain must use knowledge of natural sound regularities for this purpose. One much-discussed regularity is the tendency for frequencies to be harmonically related (integer multiples of a fundamental frequency). To test the role of harmonicity in real-world sound segregation, we developed speech analysis/synthesis tools to perturb the carrier frequencies of speech, disrupting harmonic frequency relations while maintaining the spectrotemporal envelope that determines phonemic content. We find that violations of harmonicity cause individual frequencies of speech to segregate from each other, impair the intelligibility of concurrent utterances despite leaving intelligibility of single utterances intact, and cause listeners to lose track of target talkers. However, additional segregation deficits result from replacing harmonic frequencies with noise (simulating whispering), suggesting additional grouping cues enabled by voiced speech excitation. Our results demonstrate acoustic grouping cues in real-world sound segregation.
In this paper we present a systematic study of automatic classification of consumer videos into a large set of diverse semantic concept classes, which have been carefully selected based on user studies and extensively annotated over 1300+ videos from real users. Our goals are to assess the state of the art of multimedia analytics (including both audio and visual analysis) in consumer video classification and to discover new research opportunities. We investigated several statistical approaches built upon global/local visual features, audio features, and audio-visual combinations. Three multi-modal fusion frameworks (ensemble, context fusion, and joint boosting) are also evaluated. Experiment results show that visual and audio models perform best for different sets of concepts. Both provide significant contributions to multimodal fusion, via expansion of the classifier pool for context fusion and the feature bases for feature sharing. The fused multimodal models are shown to significantly reduce the detection errors (compared to single modality models), resulting in a promising accuracy of 83% over diverse concepts. To the best of our knowledge, this is the first work on systematic investigation of multimodal classification using a large-scale ontology and realistic video corpus.
Semantic indexing of images and videos in the consumer domain has become a very important issue for both research and actual application. In this work we developed Kodak's consumer video benchmark data set, which includes (1) a significant number of videos from actual users, (2) a rich lexicon that accommodates consumers' needs, and (3) the annotation of a subset of concepts over the entire video data set. To the best of our knowledge, this is the first systematic work in the consumer domain aimed at the definition of a large lexicon, construction of a large benchmark data set, and annotation of videos in a rigorous fashion. Such effort will have significant impact by providing a sound foundation for developing and evaluating large-scale learningbased semantic indexing/annotation techniques in the consumer domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.