The Eph family of receptor tyrosine kinases and their cognate ligands, the Ephrins, form a coordinated program of cell contact-mediated migration control, polarity establishment, and tissue architecture development. Specifically, the ligand Ephrin-A1 has been shown to regulate cell morphology and motility through the activation of EphA receptors, which signal to the PI3K pathway to induce cell retraction. MEFs with PI3K subunit p85b knockout (p85b À/À ) exhibited markedly reduced cell retraction following Ephrin-A1 stimulation. Ephrin-A1 also serves as an inhibitory substrate for cell spreading and migration. Moreover, Ephrin-A1 treatment results in the dephosphorylation of paxillin and induces the reorganization of phosphopaxillin-containing focal adhesions. The Ephrin-A1 regulated paxillin dephosphorylation is phosphatase dependent, but p85b independent. The present study serves to demonstrate a novel molecular signaling pathways that regulate Ephrin-A1-regulated cell retraction and interaction to the substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.