Emerging Big Data analytics and machine learning applications require a significant amount of computational power. While there exists a plethora of large-scale data processing frameworks which thrive in handling the various complexities of data-intensive workloads, the ever-increasing demand of applications have made us reconsider the traditional ways of scaling (e.g., scale-out) and seek new opportunities for improving the performance. In order to prepare for an era where data collection and processing occur on a wide range of devices, from powerful HPC machines to small embedded devices, it is crucial to investigate and eliminate the potential sources of inefficiency in the current state of the art platforms. In this paper, we address the current and upcoming challenges of pervasive data processing and present directions for designing the next generation of largescale data processing systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.