Inhibition of Salmonella by Lactobacillus has been a popular research topic for decades; however, the inhibition potential of chicken-derived Salmonella by chicken-derived Lactobacillus has not yet been studied. In this study, 89 strains of Lactobacillus from chicken intestines were isolated by national standard method, Gram staining, physiological, and biochemical experiments and molecular sequencing; The inhibition characteristics of 89 strains of chicken derived Lactobacillus against 10 strains Salmonella (S. Enteritidis SE05, SC31, SC21, SC72 SC74, SC79, SC83, SC87; S. bongori SE47; S. Typhimurium, SC85) were detected by agar inhibition zone, The results showed that the inhibition zone of 24 strains of chicken derived Lactobacillus was more than 10 mm, which indicated that the isolated chicken derived Lactobacillus could effectively inhibit the growth of Salmonella; The drug resistance and bile salt tolerance of these 24 strains were analyzed, The results showed that the standard strains LG and L76 were not resistant, and the other 22 Lactobacillus strains showed different degrees of resistance. The strains LAB24, LAB26, LAB53, LAB69, and L76 showed good tolerance at the concentration of 3 g/L bile salt; Caco-2 cell experiment and flow cytometry were used to analyze the inhibitory effect of chicken derived Lactobacillus on the adhesion of Salmonella to Caco-2 cells, The results showed that 16 probiotics could effectively inhibit the adhesion of Salmonella to Caco-2 cells. Twelve probiotics were identified by molecular biology. The results showed that L76 was Enterococcus faecalis, and the other 11 strains were Lactobacillus.
In this study, the effects of γ-aminobutyric acid (GABA) on physio-biochemical metabolism, phenolic acid accumulation, and antioxidant system enhancement in germinated wheat under drought stress was investigated. The results showed that exogenous GABA reduced the oxidative damage in wheat seedlings caused by drought stress and enhanced the content of phenolics, with 1.0 mM being the most effective concentration. Six phenolic acids were detected in bound form, including p-hydroxybenzoic acid, vanillic acid, syringic acid, p-coumaric acid, ferulic acid, and sinapic acid. However, only syringic acid and p-coumaric acid were found in free form. A total of 1.0 mM of GABA enhanced the content of total phenolic acids by 28% and 22%, respectively, compared with that of drought stress, on day four and day six of germination. The activities of phenylalanine ammonia lyase (PAL), cinnamic acid 4-hydroxylase (C4H) and 4-coumarate coenzyme A ligase (4CL) were activated by drought stress plus GABA treatment. Antioxidant enzyme activities were also induced. These results indicate that GABA treatment may be an effective way to relieve drought stress as it activates the antioxidant system of plants by inducing the accumulation of phenolics and the increase in antioxidant enzyme activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.