It is currently unclear whether the mechanism of endophytic fungi improving the alkali tolerance of Hordeum bogdanii affects secondary metabolites. Unveiling this knowledge is crucial for understanding the tolerance mechanism of H. bogdanii to alkaline stress. The aim of this study was to investigate how endophytic fungi affect secondary metabolites of H. bogdanii under alkaline stress at different concentrations. Endophyte-infected (E +) and endophyte-free (E−) individuals of H. bogdanii were used as materials in this study. The method of indoor vermiculite aseptic planting was adopted. After mixed alkali stress treatment, the roots, stems, and leaves of the plants were collected to measure the indicators related to secondary metabolites. The results showed that endophytic fungi improved the alkali resistance of H. bogdanii by improving the related indicators of secondary metabolites. endophytic fungi significantly increased the contents of phosphorus, polyphenols, and alkaloids, and the activities of polyphenol oxidase and acid phosphatase, and significantly reduced flavonoid content. The content of polyphenols and alkaloids in stems, polyphenol oxidase activity in stems and leaves, and acid phosphatase activity in leaves were significantly affected. The findings of this study may aid in amplifying the alkali resistance mechanism of endophytic fungi to H. bogdanii as well as provide insights into improving the alkali resistance of other plants.
Plants cope with abiotic stress in several ways, including by collaborating with microorganisms. Epichloë, an endophytic fungus, has been shown to improve plant tolerance to extreme external environments. Hordeum bogdanii is a known salt-tolerant plant with the potential to improve alkaline lands. NHX1 plays a key role in the transport of ions in the cell and is overexpressed in plants with increased salt tolerance. However, the expression levels of HbNHX1 in Epichloë endophytic fungal symbionts in H. bogdanii have not been elucidated. We used Hordeum bogdanii (E+) with the endophytic fungi Epichloë bromicola and H. bogdanii (E−) without the endophytic fungi and compared the differences in the ion content and HbNHX1 expression between the shoots and roots of E+ and E− plants under alkaline stress. The absorption capacity of both K+ and Na+ of H. bogdanii with endophytic fungi was higher than that without endophytic fungi. In the absence of alkaline stress, endophytic fungi significantly reduced the Cl− content in the host H. bogdanii. Alkaline stress reduced SO42− content in H. bogdanii; however, compared with E−, endophytic fungi increased the content of SO42− in E+ plants. With an increase in the alkaline concentration, the expression of HbNHX1 in the roots of H. bogdanii with endophytic fungus exhibited an upward trend, whereas the expression in the shoots exhibited a downward trend first and then an upward trend. Under 100 mmol·L−1 mixed alkaline stress, the expression of HbNHX1 in E+ was significantly higher than that in E−, indicating that endophytic fungi could increase the Na+ region in vacuoles. The external environment affects the regulation of endophytic fungi in H. bogdanii and that endophytic fungi can play a key role in soil salinization. Therefore, the findings of this study will provide technical support and a theoretical basis for better utilization of endophytic fungi from H. bogdanii in saline land improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.