Background. Pyroptosis is closely related to the programmed death of cancer cells as well as the tumor immune microenvironment (TIME) via the host-tumor crosstalk. However, the role of pyroptosis-related genes as prognosis and TIME-related biomarkers in skin cutaneous melanoma (SKCM) patients remains unknown. Methods. We evaluated the expression profiles, copy number variations, and somatic mutations (CNVs) of 27 genes obtained from MSigDB database regulating pyroptosis among TCGA-SKCM patients. Thereafter, we conducted single-sample gene set enrichment analysis (ssGSEA) for evaluating pyroptosis-associated expression patterns among cases and for exploring the associations with clinicopathological factors and prognostic outcome. In addition, a prognostic pyroptosis-related signature (PPRS) model was constructed by performing Cox regression, weighted gene coexpression network analysis (WGCNA), and least absolute shrinkage and selection operator (LASSO) analysis to score SKCM patients. On the other hand, we plotted the ROC and survival curves for model evaluation and verified the robustness of the model through external test sets (GSE22153, GSE54467, and GSE65904). Meanwhile, we examined the relations of clinical characteristics, oncogene mutations, biological processes (BPs), tumor stemness, immune infiltration degrees, immune checkpoints (ICs), and treatment response with PPRS via multiple methods, including immunophenoscore (IPS) analysis, gene set variation analysis (GSVA), ESTIMATE, and CIBERSORT. Finally, we constructed a nomogram incorporating PPRS and clinical characteristics to improve risk evaluation of SKCM. Results. Many pyroptosis-regulated genes showed abnormal expression within SKCM. TP53, TP63, IL1B, IL18, IRF2, CASP5, CHMP4C, CHMP7, CASP1, and GSDME were detected with somatic mutations, among which, a majority displayed CNVs at high frequencies. Pyroptosis-associated profiles established based on pyroptosis-regulated genes showed markedly negative relation to low stage and superior prognostic outcome. Blue module was found to be highly positively correlated with pyroptosis. Later, this study established PPRS based on the expression of 8 PAGs (namely, GBP2, HPDL, FCGR2A, IFITM1, HAPLN3, CCL8, TRIM34, and GRIPAP1), which was highly associated with OS, oncogene mutations, tumor stemness, immune infiltration degrees, IC levels, treatment responses, and multiple biological processes (including cell cycle and immunoinflammatory response) in training and test set samples. Conclusions. Based on our observations, analyzing modification patterns associated with pyroptosis among diverse cancer samples via PPRS is important, which can provide more insights into TIME infiltration features and facilitate immunotherapeutic development as well as prognosis prediction.
Wound infection, especially chronic ones, not only increases the opportunity to generate superbacteria but also imposes significant burden, both physically and mentally, on the patients. Therefore, the development of suitable wound addressing is an important way to deal with this matter. Here in this study, we employed the good gelling property of agarose (AR) and the wound healing promotion effect of hyaluronic acid (HA) to prepare an agarose-hyaluronic acid hydrogel. The AR-HA gel was loaded with silver ion (Ag+ from AgNO3) upon gelling (AR-HA/Ag) and finally applied as a potential wound dressing for antibacterial treatment and healing promotion of wounds. Our results suggested that the AR-HA/Ag hydrogel maintained the antibacterial efficacy of Ag+ while significantly promoted the healing of human umbilical vein endothelial cells (HUVEC) due to the cell proliferation promotion effect of HA. Taken together, AR-HA/Ag might be a potential antibacterial wound dressing for future application in clinic.
B7-H3 is one of the most important members of the B7/CD28 family, and its expression level is abnormally high in a variety of tumors. B7-H3 inhibits T cell activation via binding to the corresponding receptors on T cells, thereby mediating tumor immune escape. Glycosylation is a common post-translational modification of proteins, which plays an essential role in protein expression patterns and biological functions. Current evidence has shown that the abnormal glycosylation of B7-H3 in tumors is of great significance for protein expression and ligand-receptor binding. Therefore, in-depth exploration of the underlying mechanism of glycosylation modification of B7-H3 is expected to provide new insights for tumor immunotherapy. To investigate the underlying mechanism of glycosyltransferase-mediated glycosylation of B7-H3. Firstly, the CHIPBase database was used to screen glycosyltransferases with a high correlation with the protein expression of B7-H3. Then their siRNAs were designed and synthesized to transfect into cells, and the western blotting assay was performed for further screening. Secondly, the siRNA and overexpression plasmid of the screened glycosyltransferase were respectively transfected into cells to verify the effect on the expression level of B7-H3. Thirdly, the effect of glycosyltransferase on the expression level of B7-H3 was explored by changing its substrate level. Finally, the co-immunoprecipitation experiment was conducted to verify whether protein binding existed between B7-H3 and the glycosyltransferase. The glycosyltransferase called A4GALT had the highest correlation with the protein expression of B7-H3. After knocking down or overexpressing A4GALT, the protein expression level of B7-H3 both changed significantly. When knocked down GALT to reduce the galactosyl donors, B7-H3 was significantly down-regulated. And B7-H3 was up-regulated while increasing the galactose in the medium. In addition, the Co-immunoprecipitation experiment proved that there was protein binding between B7-H3 and A4GALT. A4GALT can positively regulate the expression of B7-H3, and changing the level of galactosyl donors can also positively regulate the expression of B7-H3. There is a protein interaction between A4GALT and B7-H3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.