This paper synthesizes information on the spatial and temporal dynamics of wood in small streams in the Pacific Northwest region of North America. The literature on this topic is somewhat confused due to a lack of an accepted definition of what constitutes “small” streams and what is the relative size of woody debris contained within the channel. This paper presents a matrix that defines woody debris relative to channel size and then discusses the components of a wood budget. Headwater streams are in close proximity to wood sources and, in steeplands, are often tightly constrained by steep hillslopes. Special consideration is given to ecosystem characteristics and to management practices that affect the wood dynamics in this context. Knowledge gaps and uncertainties that can be used to guide future research are identified. Very little is currently known about the role of mass wasting in wood recruitment and storage relative to other processes, such as bank erosion and mortality, in larger streams. Further, very little work has addressed the relative importance of different wood depletion processes, especially those associated with wood transport. The effect of other ecosystem variables on wood dynamics locally across a watershed (from valley bottom to mountaintop) and regionally across the landscape (from maritime to continental climates) is not addressed. Finally, the scientific community has only begun to deal with the effects of management practices on wood quantity, structure, and movement in small streams.
The recent advent of digital photogrammetry has enabled the modeling and monitoring of river beds at relatively high spatial resolution (0·01 to 1 m) through the extraction of digital elevation models (DEMs). The traditional approach to image capture has been to mount a metric camera to an aircraft, although non-metric cameras have been mounted to a variety of novel aerial platforms to acquire river-based imagery (e.g. helicopters, radio-controlled motorized vehicles, tethered blimps and balloons). However, most of these techniques are designed to acquire imagery at fl ying heights above the riparian tree canopy. In relatively narrow channels (e.g. <20 m bankfull width), streamside trees can obscure the channel and limit continuous photogrammetric data acquisition of both the channel bed and banks, while still providing useful information regarding the riparian canopy and even spot elevations of the channel. This paper presents a technique for the capture and analysis of close-range photogrammetric data acquired from a vertically mounted non-metric camera suspended 10 m above the channel bed by a unipod. The camera is positioned under the riparian forest canopy so that the channel bed can be imaged without obstruction. The system is portable and permits relatively rapid image acquisition over rough terrain and in dense forest. The platform was used to generate DEMs with a nominal ground resolution of 0·03 m. DEMs generated from this platform required post-possessing to either adjust or eliminate erroneous cells introduced by the extraction process, overhanging branches, and by the effects of refraction at the air-water interface for submerged portions of the channel bed. The vertical precision in the post-processed surface generally ranged from ± 0·01 to 0·1 m depending on the quality of triangulation and the characteristics of the surface being imaged.
The movement of sediment through mountain river networks remains difficult to predict, as processes beyond streamflow and particle size are responsible for the entrainment and transport of bedload sediment. In deglaciated catchments, additional complexity arises from glacial impacts on landscape organization. Research to date indicates that the quantity of sediment stored in the channel is an important component of sediment transport in systems which alternate between supply and transport limited states, but limited long‐term field data exist which can capture storage‐transfer dynamics over a timescale encompassing episodic supply typical of mountain streams. We use a 45‐year dataset with annual and decadal‐scale data on sediment storage, channel morphology, and wood loading to investigate the spatial and temporal organization of storage in Carnation Creek, a previously glaciated 11 km2 catchment on Vancouver Island, British Columbia. Sediment is supplied episodically to the channel, including additions from debris flows in the early 1980s just upstream of the studied channel region. Analyzing the spatial and temporal organization of sediment storage along 3.0 km of channel mainstem reveals a characteristic storage wavelength similar to the annual bedload particle travel distance. Over time, two scales of variation in storage are observed: small‐scale fluctuation of 3–10 years corresponding to local erosional and depositional processes, and larger scale response over 25–35 years related to supply of sediment from hillslopes. Complex relationships between storage and sediment transfer (i.e., annual change in storage) are identified, with decadal‐scale hysteresis present in storage‐transfer relations in sites influenced by hillslope sediment and logjams. We propose a conceptual model linking landscape organization to temporal variability in storage and to storage–export cycles. Collectively, our results reaffirm the importance of storage to sediment transport and channel morphology, and highlight the complexity of storage–transport interactions. © 2019 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.