Atrial cardiomyopathy (ACM) represents a constantly evolving concept, with increasing importance in contemporary research and clinical practice. A better understanding of the mechanisms involved in atrial remodeling and its clinical correlations especially with atrial fibrillation (AF) and other cardiometabolic comorbidities may induce a significant impact on the diagnosis, prognosis, and therapeutic approach of ACM-related comorbidities. Although initially described several decades ago, investigators have only recently highlighted that several renal, metabolic, and cardiovascular diseases are determining factors for atrial remodeling and subsequent ACM. Based on data from multiple recent studies, our research emphasizes the correlations between ACM and other coexisting pathologies including cardiovascular, respiratory, or metabolic diseases, with fibrosis being the most incriminated pathophysiological mechanism. In addition to the usual tests, the paraclinical assessment of ACM is increasingly based on the use of various cardiac biomarkers, while the cardiac magnetic resonance (CMR) has become an increasingly tempting diagnostic too for describing morphofunctional aspects of the heart chambers, with the gadolinium contrast enhanced CMR (LGE-CMR) emerging as a commonly used technique aiming to identify and quantify the precise extent of atrial fibrosis. Further research should be conducted in order to clarify our knowledge regarding atrial remodeling and, therefore, to develop new and improved therapeutic approaches in these patients.
Biomarkers are important diagnostic and prognostic tools as they provide results in a short time while still being an inexpensive, reproducible and accessible method. Their well-known benefits have placed them at the forefront of research in recent years, with new and innovative discoveries being implemented. Cardiovascular and neurological diseases often share common risk factors and pathological pathways which may play an important role in the use and interpretation of biomarkers’ values. Among the biomarkers used extensively in clinical practice in cardiology, hs-TroponinT, CK-MB and NTproBNP have been shown to be strongly influenced by multiple neurological conditions. Newer ones such as galectin-3, lysophosphatidylcholine, copeptin, sST2, S100B, myeloperoxidase and GDF-15 have been extensively studied in recent years as alternatives with an increased sensitivity for cardiovascular diseases, but also with significant results in the field of neurology. Thus, given their low specificity, the values interpretation must be correlated with the clinical judgment and other available investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.