Singlet fission (SF) has the potential to supersede the traditional solar energy conversion scheme by means of boosting the photonto-current conversion efficiencies beyond the 30% ShockleyQueisser limit. Here, we show unambiguous and compelling evidence for unprecedented intramolecular SF within regioisomeric pentacene dimers in room-temperature solutions, with observed triplet quantum yields reaching as high as 156 ± 5%. Whereas previous studies have shown that the collision of a photoexcited chromophore with a ground-state chromophore can give rise to SF, here we demonstrate that the proximity and sufficient coupling through bond or space in pentacene dimers is enough to induce intramolecular SF where two triplets are generated on one molecule.acene oligomers | excited states | singlet fission | multireference perturbation theory | time-resolved spectroscopy S inglet fission (SF) is a spin-allowed process to convert one singlet excited state into two triplet excited states, namely a correlated triplet pair (1). The ability to effectively implement SF processes in solar cells could allow for more efficient harvesting of high-energy photons from the solar spectrum and allow for the design of solar cells to circumvent the Shockley-Queisser performance limit (2). Indeed, several recent studies have demonstrated remarkably efficient solar cell devices based on SF (3-6).One requirement that needs to be met to achieve SF is that the photoexcited chromophore in its singlet excited state must share its energy with a neighboring ground-state chromophore. As such, the potential of coupled chromophores to afford two triplet excited states via SF has been elucidated in, for example, a tetracene dimer with an SF yield of around 3% (3, 7). Additionally, past experiments in single-crystal, polycrystalline, and amorphous solids of pentacene have documented that the efficiency of SF relates to the electronic coupling between these two chromophores (8, 9). Hence, molecular ordering in terms of crystal packing, that is, proximity, distances, orbital overlap, etc., is decisive with respect to gaining full control over and to finetuning interchromophoric interactions in the solid state (10, 11). Of equal importance are the thermodynamic requirements, namely that the energy of the lowest-lying singlet absorbing state must match or exceed the energy of two triplet excited states (S 1 ≥ 2T 1 ) (11). In light of both aspects, hydrocarbons such as acenes--tetracene, pentacene, hexacene--and their derivatives are at the forefront of investigations toward a sound understanding and development of molecular building blocks for SF. In tetracenes, the singlet-and triplet-pair energy levels are nearly degenerate (S 1 = 2T 1 ), leaving no or little standard enthalpy of reaction for SF (12). In solution, the latter is, however, offset by sizable entropy rendering the process rather slow and, thus, inefficient (13). In addition, the low SF yield relates to the dimer geometry. Its nature hinders electronic coupling through space, leaving only thro...
aWe show unambiguous and compelling evidence by means of pump-probe experiments, which are complemented by calculations using ab initio multireference perturbation theory, for intramolecular singlet fission (SF) within two synthetically tailored pentacene dimers with cross-conjugation, namely XC1 and XC2. The two pentacene dimers differ in terms of electronic interactions as evidenced by perturbation of the ground state absorption spectra stemming from stronger through-bond contributions in XC1 as confirmed by theory. Multiwavelength analysis, on one hand, and global analysis, on the other hand, confirm that the rapid singlet excited state decay and triplet excited state growth relate to SF. SF rate constants and quantum yields increase with solvent polarity. For example, XC2 reveals triplet quantum yields and rate constants as high as 162 ± 10% and (0.7 ± 0.1) × 10 12 s −1, respectively, in room temperature solutions.
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
Acenes, heteroacenes, conjugated polycyclic hydrocarbons, and polycyclic aromatic hydrocarbons (collectively referred to in this review as conjugated polycyclic molecules, CPMs) have fascinated chemists since they were first isolated and synthesized in the mid 19th century. Most recently, these compounds have shown significant promise as the active components in organic devices (e.g., solar cells, thin‐film transistors, light‐emitting diodes, etc.), and, since 2001, a plethora of publications detail synthetic strategies to produce CPMs. In this review, we discuss reductive aromatization, reductive dearomatization, and elimination/extrusion reactions used to form CPMs. After a brief discussion on early methods to synthesize CPMs, we detail the use of reagents used for the reductive (de)aromatization of precursors containing 1,4‐diols/diethers, including SnCl2 and iodide (I−). Extension of these methods to carbomers and cumulenes is briefly discussed. We then describe low‐valent metal species used to reduce endoxides to CPMs, and discuss the methods to directly reduce acenediones and acenones to the respective acene. In the final section, we describe methods used to affect aromatization to the desired CPM via extrusion of small, volatile molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.