Immune checkpoint inhibitors (ICIs) as positive modulators of immune response have revolutionized the treatment of cancer and have achieved impressive efficacy in melanoma and numerous solid tumor malignancies. These agents are being investigated in acute myeloid leukemia (AML) to further enhance response rate as induction therapy and to improve relapse-free survival (RFS) post chemotherapy and bone marrow transplantation. PD-1 and CTLA-4 are the two most actively investigated checkpoint receptors, which play a role in different stages of anti-tumor immune response. This study reviews data from ongoing phase I, II clinical trials evaluating PD-1 and CTLA-4 inhibitors on AML patients and discusses especially efficacy and adverse events as well as prospects of these drugs in treating AML. Single anti-PD-1 monoclonal antibody infusion shows rather modest clinical efficacy. While combinations of PD-1 inhibitor with hypomethylating agents (HMAs) represent encouraging outcome for relapsed/refractory (R/R) AML patients as well as for elderly patients as first-line therapy option. Adding PD-1 inhibitor to traditional induction therapy regimen is also safe and feasible. CTLA-4 inhibitor ipilimumab exhibits specific potency in treating relapsed AML patients with extramedullary disease in later post-transplantation stage. In terms of side effects, irAEs found in these trials can mostly be appropriately managed with steroids but are occasionally fatal. More rationally designed combinational therapies are under investigation in ongoing clinical trials and will further advance our understanding of checkpoint inhibitors as well as lead us to the most appropriate application of these agents.
Objective
To examine the bactericidal effects of three different states of medical ozone (liquid, gas, and oil) against drug-resistant strains of common bacteria on burn wounds, which could as a clinical reference.
Methods
Three multidrug-resistant strains of methicillin-resistant
Staphylococcus aureus
, pan-resistant
Pseudomonas aeruginosa
, and ESBLs
Klebsiella pneumoniae
were identified from burn wounds. The colonies of the three varieties of bacteria were each carried out using the pour plate method prior to the start of the experiment. Then, depending on the state of ozone, different treatment procedures are applied. Group of ozone gas: in a closed glass jar, the bacterial liquid was injected into a single layer of sterile gauze, and the ozone gas concentration was held at 50 g/mL. The bacterial liquid was diluted and combined directly with ozone water in the ozone water group. Ozone is a type of oil: after the emulsifier was added to the oil group. The gas, water, and oil groups were rapidly neutralized and counted again after 5, 10, and 30 minutes.
Results
Ozone gas and oil groups totally eliminated multidrug resistant bacteria in the above study within 30 minutes. (2) At 5 and 10 minutes, the difference in bactericidal effect between ozone gas group and ozone water and oil group was statistically significant (P<0.05), and there was no significant difference between ozone water and oil groups (P>0.05); at the time of 30 minutes, the effects of bactericidal effect between ozone water group and ozone gas and oil had no significance (P> 0.05).
Conclusion
Ozone has the ability to kill bacteria, depending on the treatment time, different ozone types should be chosen for sterilization and disinfection in clinical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.