Endoplasmic reticulum (ER) stress is caused by disturbances in the structure and function of the ER with the accumulation of misfolded proteins and alterations in the calcium homeostasis. The ER response is characterized by changes in specific proteins, causing translational attenuation, induction of ER chaperones and degradation of misfolded proteins.
The mRNAs of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) exhibit a similar, though not identical, regional and cellular distribution in the rodent brain. In situ hybridization experiments have shown that BDNF, like NGF, is predominantly expressed by neurons. The neuronal localization of the mRNAs of these two neurotrophic molecules raised the question as to whether neuronal activity might be involved in the regulation of their synthesis. After we had demonstrated that depolarization with high potassium (50 mM) resulted in an increase in the levels of both BDNF and NGF mRNAs in cultures of hippocampal neurons, we investigated the effect of a large number of transmitter substances. Kainic acid, a glutamate receptor agonist, was by far the most effective in increasing BDNF and NGF mRNA levels in the neurons, but neither N‐methyl‐D‐aspartic acid (NMDA) nor inhibitors of the NMDA glutamate receptors had any effect. However, the kainic acid mediated increase was blocked by antagonists of non‐NMDA receptors. Kainic acid also elevated levels of BDNF and NGF mRNAs in rat hippocampus and cortex in vivo. These results suggest that the synthesis of these two neurotrophic factors in the brain is regulated by neuronal activity via non‐NMDA glutamate receptors.
The Schwann cells and fibroblast-like cells of the intact sciatic nerve of adult rats synthesize very little nerve growth factor (NGF). After lesion, however, there is a dramatic increase in the amounts of both NGF-mRNA and NGF protein synthesized by the sciatic non-neuronal cells. This local increase in NGF synthesis partially replaces the interrupted NGF supply from the periphery to the NGF-responsive sensory and sympathetic neurons, whose axons run within the sciatic nerve. Macrophages, known to invade the site of nerve lesion during wallerian degeneration, are important in the regulation of NGF synthesis. Here we demonstrate that the effect of macrophages on NGF-mRNA levels in cultured explants of sciatic nerve can be mimicked by conditioned media of activated macrophages, and that interleukin-1 is the responsible agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.