Formalin-fixed neuroendocrine tissues from American cockroaches (Periplaneta americana) embedded in paraffin more than 30 years ago were recently analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), to reveal the histological localization of more than 20 peptide ions. These represented protonated, and other cationic species of, at least, 14 known neuropeptides. The characterization of peptides in such historical samples was made possible by a novel sample preparation protocol rendering the endogenous peptides readily amenable to MSI analysis. The protocol comprises brief deparaffinization steps involving xylene and ethanol, and is further devoid of conventional aqueous washing, buffer incubations, or antigen retrieval steps. Endogenous secretory peptides that are typically highly soluble are therefore retained in-tissue with this protocol. The method is fully “top-down”, that is, without laborious in situ enzymatic digestion that typically disturbs the detection of low-abundance endogenous peptides by MSI. Peptide identifications were supported by accurate mass, on-tissue tandem MS analyses, and by earlier MALDI-MSI results reported for freshly prepared P. americana samples. In contrast to earlier literature accounts stating that MALDI-MSI detection of endogenous peptides is possible only in fresh or freshly frozen tissues, or exceptionally, in formalin-fixed, paraffin-embedded (FFPE) material of less than 1 year old, we demonstrate that MALDI-MSI works for endogenous peptides in FFPE tissue of up to 30 years old. Our findings put forward a useful method for digestion-free, high-throughput analysis of endogenous peptides from FFPE samples and offer the potential for reinvestigating archived and historically interesting FFPE material, such as those stored in hospital biobanks.
Background: Mimiviruses or giant viruses that infect amoebas have the ability to retain the Gram stain, which is usually used to colour bacteria. There is some evidence suggesting that Mimiviruses can also infect human cells. Guided by these premises, we performed a routine Gram stain on a variety of human specimens to see if we could detect the same Gram positive blue granules that identify Mimiviruses in the amoebas. Methods: We analysed 24 different human specimens (liver, brain, kidney, lymph node and ovary) using Gram stain histochemistry, electron microscopy immunogold, high resolution mass spectrometry and protein identification. Results: We detected in the human cells Gram positive granules that were distinct from bacteria. The fine blue granules displayed the same pattern of the Gram positive granules that diagnose Mimiviruses in the cytoplasm of the amoebas. Electron microscopy confirmed the presence of human Mimiviruses-like structures and mass spectrometry identified histone H4 peptides, which had the same footprints as giant viruses. However, some differences were noted: the Mimivirus-like structures identified in the human cells were ubiquitous and manifested a distinct mammalian retroviral antigenicity. Conclusions: Our main hypotheses are that the structures could be either giant viruses having a retroviral antigenicity or ancestral cellular components having a viral origin. However, other possible alternatives have been proposed to explain the nature and function of the newly identified structures.
Phosphorylation of the voltage-gated Na+ (NaV) channel NaV1.5 regulates cardiac excitability, yet the phosphorylation sites regulating its function and the underlying mechanisms remain largely unknown. Using a systematic, quantitative phosphoproteomic approach, we analyzed NaV1.5 channel complexes purified from nonfailing and failing mouse left ventricles, and we identified 42 phosphorylation sites on NaV1.5. Most sites are clustered, and three of these clusters are highly phosphorylated. Analyses of phosphosilent and phosphomimetic NaV1.5 mutants revealed the roles of three phosphosites in regulating NaV1.5 channel expression and gating. The phosphorylated serines S664 and S667 regulate the voltage dependence of channel activation in a cumulative manner, whereas the nearby S671, the phosphorylation of which is increased in failing hearts, regulates cell surface NaV1.5 expression and peak Na+ current. No additional roles could be assigned to the other clusters of phosphosites. Taken together, our results demonstrate that ventricular NaV1.5 is highly phosphorylated and that the phosphorylation-dependent regulation of NaV1.5 channels is highly complex, site specific, and dynamic.
Phosphorylation of NaV1.5 channels regulates cardiac excitability, yet the phosphorylation sites regulating channel function and the underlying mechanisms remain largely unknown. Using a systematic quantitative phosphoproteomic approach, we analyzed NaV1.5 channel complexes purified from non-failing and failing mouse left ventricles, and we identified 42 phosphorylation sites on NaV1.5. Most sites are clustered, and three of these clusters are highly phosphorylated. Analyses of phosphosilent and phosphomimetic NaV1.5 mutants revealed the roles of three phosphosites in regulating NaV1.5 channel expression and gating. The phosphorylated serines-664 and -667 regulate the voltage-dependence of channel activation in a cumulative manner, whereas phosphorylation of the nearby serine-671, which is increased in failing hearts, decreases cell surface NaV1.5 expression and peak Na+ current. No additional roles could be assigned to the other clusters of phosphosites. Taken together, the results demonstrate that ventricular NaV1.5 is highly phosphorylated, and that the phosphorylation-dependent regulation of NaV1.5-encoded channels is highly complex, site-specific and dynamic.AbbreviationsA, alanine; E, glutamate; HEK-293, Human Embryonic Kidney 293 cells; INa, peak Na+ current; INaL, late Na+ current; IP, immunoprecipitation; mαNaVPAN, anti-NaV channel subunit mouse monoclonal antibody; MS, Mass Spectrometry; MS1, mass spectrum of peptide precursors; MS2 or MS/MS, fragmentation mass spectrum of peptides selected in narrow mass range (2 Da) from MS1 scan; NaV, voltage-gated Na+ channel; pS, phosphoserine; pT, phosphothreonine; S, serine; T, threonine; TAC, Transverse Aortic Constriction; TMT, Tandem Mass Tag.
Phosphorylation of the cardiac NaV1.5 channel pore-forming subunit is extensive and critical in modulating channel expression and function, yet the regulation of NaV1.5 by phosphorylation of its accessory proteins remains elusive. Using a phosphoproteomic analysis of NaVchannel complexes purified from mouse left ventricles, we identified nine phosphorylation sites on Fibroblast growth factor Homologous Factor 2 (FHF2). To determine the roles of phosphosites in regulating NaV1.5, we developed two models from neonatal and adult mouse ventricular cardiomyocytes in which FHF2 expression is knockdown and rescued by WT, phosphosilent or phosphomimetic FHF2-VY. While the increased rates of closed-state and open-state inactivation of NaVchannels induced by the FHF2 knockdown are completely restored by the FHF2-VY isoform in adult cardiomyocytes, sole a partial rescue is obtained in neonatal cardiomyocytes. The FHF2 knockdown also shifts the voltage-dependence of activation towards hyperpolarized potentials in neonatal cardiomyocytes, which is not rescued by FHF2-VY. Parallel investigations showed that the FHF2-VY isoform is predominant in adult cardiomyocytes, while expression of FHF2-VY and FHF2-A is comparable in neonatal cardiomyocytes. Similar to WT FHF2-VY, however, each FHF2-VY phosphomutant restores the NaV channel inactivation properties in both models, preventing identification of FHF2 phosphosite roles. FHF2 knockdown also increases the late Na+current in adult cardiomyocytes, which is restored similarly by WT and phosphosilent FHF2-VY. Together, our results demonstrate that ventricular FHF2 is highly phosphorylated, implicate differential roles for FHF2 in regulating neonatal and adult mouse ventricular NaV1.5, and suggest that the regulation of NaV1.5 by FHF2 phosphorylation is highly complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.