Prostaglandins (PGs) of the J2 series form in vivo and exert effects on a variety of biological processes. While most of PGs mediate their effects through G protein-coupled receptors, the mechanism of action for the J2 series of PGs remains unclear. Here, we report the PGJ2 and its derivatives are efficacious activators of peroxisome proliferator-activated receptors alpha and gamma (PPAR alpha and PPAR gamma, respectively), orphan nuclear receptors implicated in lipid homeostasis and adipocyte differentiation. The PGJ2 metabolite 15-deoxy-delta 12,14-PGJ2 binds directly to PPAR gamma and promotes efficient differentiation of C3H10T1/2 fibroblasts to adipocytes. These data provide strong evidence that a fatty acid metabolite can function as an adipogenic agent through direct interactions with PPAR gamma and furthermore, suggest a novel mechanism of action for PGs of the J2 series.
Tapinarof (GSK2894512) is a naturally derived topical treatment with demonstrated efficacy for patients with psoriasis and atopic dermatitis, although the biologic target and mechanism of action had been unknown. We demonstrate that the anti-inflammatory properties of tapinarof are mediated through activation of the aryl hydrocarbon receptor (AhR). We show that tapinarof binds and activates AhR in multiple cell types, including cells of the target tissue-human skin. In addition, tapinarof moderates proinflammatory cytokine expression in stimulated peripheral blood CD4+ T cells and ex vivo human skin, and impacts barrier gene expression in primary human keratinocytes; both of these processes are likely to be downstream of AhR activation based on current evidence. That the anti-inflammatory properties of tapinarof derive from AhR agonism is conclusively demonstrated using the mouse model of imiquimod-induced psoriasiform skin lesions. Topical treatment of AhR-sufficient mice with tapinarof leads to compound-driven reductions in erythema, epidermal thickening, and tissue cytokine levels. In contrast, tapinarof has no impact on imiquimod-induced skin inflammation in AhR-deficient mice. In summary, these studies identify tapinarof as an AhR agonist and confirm that its efficacy is dependent on AhR.
We explore the feasibility of muscle-computer interfaces (muCIs): an interaction methodology that directly senses and decodes human muscular activity rather than relying on physical device actuation or user actions that are externally visible or audible. As a first step towards realizing the mu-CI concept, we conducted an experiment to explore the potential of exploiting muscular sensing and processing technologies for muCIs. We present results demonstrating accurate gesture classification with an off-the-shelf electromyography (EMG) device. Specifically, using 10 sensors worn in a narrow band around the upper forearm, we were able to differentiate position and pressure of finger presses, as well as classify tapping and lifting gestures across all five fingers. We conclude with discussion of the implications of our results for future muCI designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.