The advances made in the last two decades in interference technologies, optical instrumentation, catheter technology, optical detectors, speed of data acquisition and processing as well as light sources have facilitated the transformation of optical coherence tomography from an optical method used mainly in research laboratories into a valuable tool applied in various areas of medicine and health sciences. This review paper highlights the place occupied by optical coherence tomography in relation to other imaging methods that are used in medical and life science areas such as ophthalmology, cardiology, dentistry and gastrointestinal endoscopy. Together with the basic principles that lay behind the imaging method itself, this review provides a summary of the functional differences between time-domain, spectral-domain and full-field optical coherence tomography, a presentation of specific methods for processing the data acquired by these systems, an introduction to the noise sources that plague the detected signal and the progress made in optical coherence tomography catheter technology over the last decade.
Optical coherence tomography imaging is used to improve the detection of incipient carious lesions in dental enamel. Measurements of signal attenuation in images acquired with an 850-nm light source were performed on 21 extracted molars from eight human volunteers. Stronger attenuation was observed for the optical coherence tomography (OCT) signal in healthy enamel than in carious lesions. The measured attenuation coefficients from the two groups form distinct statistical populations. The coefficients obtained from sound enamel fall within the range of 0.70 to 2.14 mm −1 with a mean value of 1.35 mm −1 , while those in carious regions range from 0.47 to 1.88 mm −1 , with a mean value of 0.77 mm −1 . Three values are selected as the lower threshold for signal attenuation in sound enamel: 0.99, 0.94, and 0.88 mm −1 . These thresholds were selected to provide detection of sound enamel with fixed specificities of 90%, 95%, and 97.5%, respectively. The corresponding sensitivities for the detection of carious lesions are 92.8%, 90.4%, and 87%, respectively, for the sample population used in this study. These findings suggest that attenuation of OCT signal at 850 nm could be an indicator of tooth demineralization and could be used as a marker for early caries detection.
Photoluminescence from InAs quantum dots in a strained Ga 0.85 In 0.15 As quantum well is investigated over a temperature range from 10 to 300 K using low intensity optical excitation. A rate equation model for the carrier dynamics is fitted to the experimental data obtained for the integrated intensity of the photoluminescence at different temperatures. It is found necessary to assume a potential barrier, possibly arising from the strain, at the interface between the dots and the quantum well that makes the carrier capture in dots less effective at low temperatures. In addition, two thermal escape mechanisms for carriers in the dots are identified that have the onsets at 110 K and 220 K, respectively. At low temperatures, the ground state photoluminescence has a large full width at half maximum, while at temperatures above 220 K, the full width decreases as emission from larger dots dominate. The activation energies for different carrier thermal escape channels are estimated using the solutions of the steady-state rate equation system.
Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.
The sensitivity of optical coherence tomography images to sample morphology is tested by two methods. The first method estimates the attenuation of the OCT signal from various regions of the probed tissue. The second method uses a box-counting algorithm to calculate the fractal dimensions in the regions of interest identified in the images. Although both the attenuation coefficient as well as the fractal dimension correlate very well with the anatomical features of the probed samples; the attenuation method provides a better sensitivity. Two types of samples are used in this study: segments of arteries collected from atherosclerosis–prone Watanabe rabbits (WHHL-MI) and healthy segments of porcine coronary arteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.