As feature geometries decrease, the budgeted error for process variations decreases as well. Keeping these variations within budget is especially important in the area of gate linewidth control. Because of this, wafer-to-wafer control of gate linewidth becomes increasingly necessary. This paper shows results from 300 mm wafers with 90 nm technology that were trimmed during the gate formation process on an etch platform. After the process that opened the gate hard mask and stripped the resist, the wafers were measured using both an integrated scatterometer and a stand-alone CD-SEM. The measurements were then used to determine the appropriate amount to be trimmed by the Chemical Oxide Removal (COR) chamber that is also integrated onto the etch system. After the wafers were trimmed and etched, they were again measured on the integrated scatterometer and stand-alone CD-SEM. With the CD-SEM as the Reference Measurement System (RMS), Total Measurement Uncertainty (TMU) analysis was used to optimize the Optical Digital Profilometry (ODP) model, thus facilitating a significant reduction in gate linewidth variation. Because the measurement uncertainty of the scatterometer was reduced to a level approaching or below that of the RMS, an improvement to TMU analysis was developed. This improvement quantifies methods for determining the measurement uncertainty of the RMS under a variety of situations.
Gate patterning is critical to the final yield and performance of logic devices. Because of this, gate linewidth control is viewed by many as the most critical application for integrated metrology on etch systems. For several years, integrated metrology and wafer-level process control have been used in high volume manufacturing of 90 and 65nm polysilicon gate etch [1], [3], [17], [22]. These wafer-level CD control systems have shown the ability to significantly reduce CD variation. With gate linewidth under control (< 2nm 3σ wafer-to-wafer), the next parameter to impact gate electrical performance is side wall angle (SWA). SWA had not been considered a critical control parameter due to the difficulty of measurement with conventional scanning electron microscope (SEM). With scatterometry, SWA measurement of litho and etch profiles are included with the critical dimension (CD) measurements. Recently, it has become visible that the polysilicon SWA correlates to electrical device parameters, and is thus, an important parameter to control. This paper will examine the current relationship between litho and etch profile control, determine potential limitations for future technology nodes, and introduce novel etch process control techniques based on multiple input multiple output (MIMO) modeling.
A method for formation and control of silicon gates orfins uses trim of a hard mark by a new gaseous oxide etch.Logic blocks with two separately controlled gate lengths and dielectric thicknesses are embedded on chip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.