Purpose: Positron Emission Tomography (PET) imaging of HER2 expression could potentially be used to select patients for HER2-targed therapy, predict response based on uptake and be used for monitoring. In this phase I/II study the HER2-binding Affibody molecule ABY-025 was labeled with 68Ga-gallium ([68Ga]ABY-025) for PET to study effect of peptide mass, test-retest variability and correlation of quantified uptake in tumors to histopathology.Experimental design: Sixteen women with known metastatic breast cancer and on-going treatment were included and underwent FDG PET/CT to identify viable metastases. After iv injection of 212±46 MBq [68Ga]ABY-025 whole-body PET was performed at 1, 2 and 4 h. In the first 10 patients (6 with HER2-positive and 4 with HER2-negative primary tumors), [68Ga]ABY-025 PET/CT with two different doses of injected peptide was performed one week apart. In the last six patients (5 HER2-positive and 1 HER2-negative primary tumors), repeated [68Ga]ABY-025 PET were performed one week apart as a test-retest of uptake in individual lesions. Biopsies from 16 metastases in 12 patients were collected for verification of HER2 expression by immunohistochemistry and in-situ hybridization.Results: Imaging 4h after injection with high peptide content discriminated HER2-positive metastases best (p<0.01). PET SUV correlated with biopsy HER2-scores (r=0.91, p<0.001). Uptake was five times higher in HER2-positive than in HER2-negative lesions with no overlap (p=0.005). The test-retest intra-class correlation was r=0.996. [68Ga]ABY-025 PET correctly identified conversion and mixed expression of HER2 and targeted treatment was changed in 3 of the 16 patients.Conclusion: [68Ga]ABY-025 PET accurately quantifies whole-body HER2-receptor status in metastatic breast cancer.
The expression status of human epidermal growth factor receptor type 2 (HER2) predicts the response of HER2-targeted therapy in breast cancer. ABY-025 is a small reengineered Affibody molecule targeting a unique epitope of the HER2 receptor, not occupied by current therapeutic agents. This study evaluated the distribution, safety, dosimetry, and efficacy of 111 In-ABY-025 for determining the HER2 status in metastatic breast cancer. Methods: Seven patients with metastatic breast cancer and HER2-positive (n 5 5) or -negative (n 5 2) primary tumors received an intravenous injection of approximately 100 μg (∼140 MBq) of 111 In-ABY-025. Planar γ-camera imaging was performed after 30 min, followed by SPECT/CT after 4, 24, and 48 h. Blood levels of radioactivity, antibodies, shed serum HER2, and toxicity markers were evaluated. Lesional HER2 status was verified by biopsies. The metastases were located by 18 F-FDG PET/CT 5 d before 111 In-ABY-025 imaging. Results: Injection of 111 In-ABY-025 yielded a mean effective dose of 0.15 mSv/MBq and was safe, well tolerated, and without drug-related adverse events. Fast blood clearance allowed high-contrast HER2 images within 4-24 h. No anti-ABY-025 antibodies were observed. When metastatic uptake at 24 h was normalized to uptake at 4 h, the ratio increased in HER2-positive metastases and decreased in negative ones (P , 0.05), with no overlap and confirmation by biopsies. In 1 patient, with HER2-positive primary tumor, 111 In-ABY-025 imaging correctly suggested a HER2-negative status of the metastases. The highest normal-tissue uptake was in the kidneys, followed by the liver and spleen. Conclusion: 111 In-ABY-025 appears safe for use in humans and is a promising noninvasive tool for discriminating HER2 status in metastatic breast cancer, regardless of ongoing HER2-targeted antibody treatment. Today,t reatment of breast cancer is based on the biologic profile of the individual tumor. Knowledge of the human epidermal growth factor receptor type 2 (HER2) status is crucial to predict the response of HER2-targeted therapy (1). Patients with breast cancer overexpressing HER2 have improved survival when treated with HER2-targeting agents such as trastuzumab, pertuzumab, and trastuzumab emtansine (2-10).The analysis of HER2 expression is usually based on a surgical specimen of the primary tumor or, in case of neoadjuvant therapy or inoperable disease, on a biopsy sample from the tumor (11). The pathologic analysis includes immunohistochemistry and in some cases fluorescence in situ hybridization (FISH). Therapy for patients with disseminated disease is often based on histopathologic classification of the primary tumor and not of the metastases. Disparities in HER2 expression of primary breast cancer and metastases have been reported. Metaanalysis of 26 studies including 2,520 patients revealed discordance in HER2 expression between the primary tumor and local lymph node metastases in the range of 2.4%-7.2% and discordance with distant metastases in the range of 6.9%-18.6%, with an abs...
68 Ga-ABY-025 is a radiolabeled Affibody molecule for in vivo diagnosis of human epidermal growth factor receptor 2 (HER2)-positive breast cancer tumors with PET. The aim of the present work was to measure the biodistribution and estimate the radiation dosimetry of 68 Ga-ABY-025 for 2 different peptide mass doses in a single group of patients using dynamic and serial whole-body PET/CT. Methods: Eight patients with metastatic breast cancer were included. Each patient underwent an abdominal 45-min dynamic and 3 whole-body PET/CT scans at 1, 2, and 4 h after injection of a low peptide dose (LD) and a high peptide dose (HD), with approximately the same amount of radioactivity, in separate investigations 1 wk apart. As input to the absorbed dose calculations, volumes of interest were drawn on all clearly identifiable source organs: liver, kidneys, spleen, descending aorta, and upper large intestine. Absorbed doses were calculated using OLINDA/EXM, version 1.1. Results: Of the major organs, the highest radionuclide uptake at 1, 2, and 4 h after injection was observed in the kidneys and liver. The highest absorbed organ doses were seen in the kidneys, followed by the liver for both LD and HD 68 Ga-ABY-025. Absorbed doses to liver and kidneys were slightly but significantly higher for LD. Total effective dose was 0.030 ± 0.003 mSv/MBq for LD and 0.028 ± 0.002 mSv/MBq for HD. Conclusion: The effective dose for a typical 200-MBq administration of 68 Ga-ABY-025 is 6.0 mSv for LD and 5.6 mSv for HD. Therefore, from a radiation dosimetry point of view, HD is preferred for PET/CT evaluation of HER2-expressing breast cancer tumors. These effective doses are somewhat higher than earlier published values for other 68 Ga-labeled tracers, such as 0.021 ± 0.003 mSv/MBq for 68 Ga-DOTATATE and 68 Ga-DOTATOC, mainly because of higher uptake in liver and kidney. Forwomen,br east cancer is currently the most common cancer.Human epidermal growth factor receptor 2 (HER2) is overexpressed in about 1 of 6 cases (1-3) at initial diagnosis and is associated with poor survival (1,3). Treatments targeted to HER2, such as with the anti-HER2 antibody trastuzumab, have considerably improved overall survival (1,3,4). Today, assessment of HER2 status is based on tumor biopsy. However, HER2 expression can vary between the primary tumor and metastases in up to 40% of cases (2,5,6) and metastatic HER2 expression can change over time, which could necessitate a change of therapy (7,8). Follow-up using biopsies cannot always be performed due to practical reasons or patient discomfort.Molecular imaging using SPECT and PET might be a noninvasive, whole-body-based way to evaluate HER2 expression quantitatively. One such approach is the use of trastuzumab labeled with 111 In (half-time, 2.8 d) (9) or 89 Zr (3.3 d) (10) for use with SPECT and PET, respectively, but the slow kinetics of antibodies require imaging several days after administration. One promising method of fast, safe, and accurate imaging that specifically binds to a site on the receptor not occu...
We believe (18)F-NaF PET/CT is a sensitive modality for detection of bone metastases caused by prostate cancer. Whole-body DWI shows a higher specificity but lower sensitivity than (18)F-NaF PET/CT. Future studies with a larger patient cohort along with analyses of costs and clinical availability are needed before implementation of these methods can be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.