Glucocorticoid negative feedback in the brain controls stress, feeding, and neural-immune interactions by regulating the hypothalamic-pituitary-adrenal axis, but the mechanisms of inhibition of hypothalamic neurosecretory cells have never been elucidated. Using whole-cell patch-clamp recordings in an acute hypothalamic slice preparation, we demonstrate a rapid suppression of excitatory glutamatergic synaptic inputs to parvocellular neurosecretory neurons of the hypothalamic paraventricular nucleus (PVN) by the glucocorticoids dexamethasone and corticosterone. The effect was maintained with dexamethasone conjugated to bovine serum albumin and was not seen with direct intracellular glucocorticoid perfusion via the patch pipette, suggesting actions at a membrane receptor. The presynaptic inhibition of glutamate release by glucocorticoids was blocked by postsynaptic inhibition of G-protein activity with intracellular GDP-beta-S application, implicating a postsynaptic G-protein-coupled receptor and the release of a retrograde messenger. The glucocorticoid effect was not blocked by the nitric oxide synthesis antagonist N(G)-nitro-L-arginine methyl ester hydrochloride or by hemoglobin but was blocked completely by the CB1 cannabinoid receptor antagonists AM251 [N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide] and AM281 [1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide] and mimicked and occluded by the cannabinoid receptor agonist WIN55,212-2 [(beta)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate], indicating that it was mediated by retrograde endocannabinoid release. Several peptidergic subtypes of parvocellular neuron, identified by single-cell reverse transcripton-PCR analysis, were subject to rapid inhibitory glucocorticoid regulation, including corticotropin-releasing hormone-, thyrotropin-releasing hormone-, vasopressin-, and oxytocin-expressing neurons. Therefore, our findings reveal a mechanism of rapid glucocorticoid feedback inhibition of hypothalamic hormone secretion via endocannabinoid release in the PVN and provide a link between the actions of glucocorticoids and cannabinoids in the hypothalamus that regulate stress and energy homeostasis.
Summary The protein α-synuclein is the main component of Lewy bodies, the neuron-associated aggregates seen in Parkinson’s disease and other neurodegenerative pathologies. An 11-residue segment, which we term NACore, appears responsible for amyloid formation and cytotoxicity of α-synuclein. Here we report crystals of NACore having dimensions smaller than the wavelength of visible light and thus invisible by optical microscopy. Thousands of times too small for structure determination by synchrotron x-ray diffraction, these crystals have yielded an atomic resolution structure by the frontier method of Micro-Electron Diffraction. The 1.4 Å resolution structure demonstrates for the first time that this method can determine previously unknown protein structures and here yields the highest resolution achieved by any cryo-electron microscopy method to date. The structure reveals protofibrils built of pairs of face-to-face β-sheets. X-ray fiber diffraction patterns show the similarity of NACore to toxic fibrils of full-length α-synuclein. The NACore structure, together with that of a second segment, inspires a model for most of the ordered portion of the toxic, full-length α-synuclein fibril, opening opportunities for design of inhibitors of α-synuclein fibrils.
The icosahedron and the dodecahedron are the largest of the Platonic solids, and icosahedral protein structures are widely utilized in biological systems for packaging and transport1,2. There has been considerable interest in repurposing such structures3–5, for example, virus-like particles for the targeted delivery and vaccine design. The ability to design proteins that self assemble into precisely specified, highly ordered icosahedral structures would open the door to a new generation of protein 'containers' that could exhibit properties custom-made for various applications. In this manuscript, we describe the computational design of an icosahedral nano-cage that self-assembles from trimeric building blocks. Electron microscopy images of the designed protein expressed in E. coli reveals a homogenous population of icosahedral particles nearly identical to the design model. The particles are stable in 6.7 M guanidine hydrochloride at up to 80 °C, and undergo extremely abrupt, but reversible, disassembly between 2 M and 2.25 M guanidinium thiocyanate. The icosahedron is robust to genetic fusions: one or two copies of superfolder GFP can be fused to each of the 60 subunits to create highly fluorescent standard candles for light microscopy, and a designed protein pentamer can be placed in the center of each of the twenty pentameric faces to potentially gate macromolecule access to the nanocage interior. Such robust designed nanocages should have considerable utility for targeted drug delivery6, vaccine design7, and synthetic biology8.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.