Traumatic brain injury (TBI) is the leading cause of death in young adults and children. The treatment of TBI in the acute phase has improved substantially; however, the prevention and management of long-term complications remain a challenge. Blood–brain barrier (BBB) breakdown has often been documented in patients with TBI, but the role of such vascular pathology in neurological dysfunction has only recently been explored. Animal studies have demonstrated that BBB breakdown is involved in the initiation of transcriptional changes in the neurovascular network that ultimately lead to delayed neuronal dysfunction and degeneration. Brain imaging data have confirmed the high incidence of BBB breakdown in patients with TBI and suggest that such pathology could be used as a biomarker in the clinic and in drug trials. Here, we review the neurological consequences of TBI, focusing on the long-term complications of such injuries. We present the clinical evidence for involvement of BBB breakdown in TBI and examine the primary and secondary mechanisms that underlie such pathology. We go on to consider the consequences of BBB injury, before analyzing potential mechanisms linking vascular pathology to neuronal dysfunction and degeneration, and exploring possible targets for treatment. Finally, we highlight areas for future basic research and clinical studies into TBI.
Cortical fast-spiking (FS) interneurons display highly variable electrophysiological properties. Their spike responses to step currents occur almost immediately following the step onset or after a substantial delay, during which subthreshold oscillations are frequently observed. Their firing patterns include high-frequency tonic firing and rhythmic or irregular bursting (stuttering). What is the origin of this variability? In the present paper, we hypothesize that it emerges naturally if one assumes a continuous distribution of properties in a small set of active channels. To test this hypothesis, we construct a minimal, single-compartment conductance-based model of FS cells that includes transient Na+, delayed-rectifier K+, and slowly inactivating d-type K+ conductances. The model is analyzed using nonlinear dynamical system theory. For small Na+ window current, the neuron exhibits high-frequency tonic firing. At current threshold, the spike response is almost instantaneous for small d-current conductance, g d, and it is delayed for larger g d. As g d further increases, the neuron stutters. Noise substantially reduces the delay duration and induces subthreshold oscillations. In contrast, when the Na+ window current is large, the neuron always fires tonically. Near threshold, the firing rates are low, and the delay to firing is only weakly sensitive to noise; subthreshold oscillations are not observed. We propose that the variability in the response of cortical FS neurons is a consequence of heterogeneities in their g d and in the strength of their Na+ window current. We predict the existence of two types of firing patterns in FS neurons, differing in the sensitivity of the delay duration to noise, in the minimal firing rate of the tonic discharge, and in the existence of subthreshold oscillations. We report experimental results from intracellular recordings supporting this prediction.
Cortical fast-spiking (FS) interneurons display highly variable electrophysiological properties. Their spike responses to step currents occur almost immediately following the step onset or after a substantial delay, during which subthreshold oscillations are frequently observed. Their firing patterns include high-frequency tonic firing and rhythmic or irregular bursting (stuttering). What is the origin of this variability? In the present paper, we hypothesize that it emerges naturally if one assumes a continuous distribution of properties in a small set of active channels. To test this hypothesis, we construct a minimal, single-compartment conductance-based model of FS cells that includes transient Na, and slowly inactivating d-type K þ conductances. The model is analyzed using nonlinear dynamical system theory. For small Na þ window current, the neuron exhibits high-frequency tonic firing. At current threshold, the spike response is almost instantaneous for small d-current conductance, g d , and it is delayed for larger g d . As g d further increases, the neuron stutters. Noise substantially reduces the delay duration and induces subthreshold oscillations. In contrast, when the Na þ window current is large, the neuron always fires tonically. Near threshold, the firing rates are low, and the delay to firing is only weakly sensitive to noise; subthreshold oscillations are not observed. We propose that the variability in the response of cortical FS neurons is a consequence of heterogeneities in their g d and in the strength of their Na þ window current. We predict the existence of two types of firing patterns in FS neurons, differing in the sensitivity of the delay duration to noise, in the minimal firing rate of the tonic discharge, and in the existence of subthreshold oscillations. We report experimental results from intracellular recordings supporting this prediction.
An essential component of feedback and top-down information in the cortical column arrives at layer 1 (L1) where it contacts distal dendrites of pyramidal neurons. Although much is known about the anatomical organization of L1 fibers, their contribution to sensory information processing remains to be determined. We assessed the physiological significance of L1 inputs by performing extracellular recordings in vivo from neurons in the primary somatosensory cortex of rodents. We found that blocking activity in L1 increases whisker-evoked response magnitude and variance, suggesting that L1 exerts an inhibitory influence on whisker responses. However, when pairing L1 stimulation with whisker deflection, the interval between the stimuli determined the outcome of the interaction, with facilitation of sensory responses dominating the short intervals (=10 ms) and suppression prevailing at longer intervals (>10 ms). These temporal interactions resulted in a time-dependent regulation of direction tuning of cortical neurons. The synaptic mechanisms underlying L1 inputs' influences were examined using whole cell recordings in vitro while pairing L1 and white-matter stimulations. We found time-dependent, layer-specific differences in synaptic summation of the two inputs, with supralinearity at shorter intervals and sublinearity at longer intervals that resulted mainly from shunting inhibition. Taken together, our results demonstrate that L1 inputs impose a time- and layer-specific regulation on sensory-evoked responses. This in turn may lead to a dynamic transmission of sensory information in the somatosensory cortex.
The mammalian cortical layer I is a convergence site for axons of sub- and intracortical origin, and the apical dendritic tufts of pyramidal neurons. A prominent feature of layer I is an extensive plexus of inhibitory axons, which originate from stellate cells in all cortical laminae. The role of this inhibitory projection in the activity of cortical networks has yet to be determined. We investigated the degree to which inhibitory inputs within layer I affect the activity of the underlying cellular network. Field potentials (FPs) were recorded in layer II/III. Focal application of the GABAA blocker picrotoxin in layer I above the recording pipette or the removal of layer I resulted in larger FP amplitudes for stimulations at control-equal intensities. When inhibition was partially blocked, the removal of layer I caused a significant reduction in the threshold stimulus intensity required for generating epileptiform events, and a rise in the propagation velocity of these events. Immunocytochemistry for chemical markers of interneurons proved that the inhibitory input to layer I is predominantly somatostatin immunoreactive (SM-ir), such that layer I contains approximately one-third of all SM-ir axons in the cortex. Calretinin-immunoreactive axons were also present in layer I at a lower density. We conclude that the impact of layer I on the cortical cellular network includes a significant inhibitory component. This inhibition confers a moderate restraining influence, and its removal increases the excitability of cortical circuits, but not sufficiently to induce epileptic phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.