Alternative performance metricsFor the purposes of characterization of a particular biocircuit testing environment, in vitro or in vivo, there are any number of performance metrics that may be used. We have chosen to use integrated mRNA and final protein concentration since they intuitively represent the total transcriptional and translational capacity of a system. Other metrics, such as the mRNA and protein production rates and end times, are complementary to those used in this work and may be particularly informative depending on the specific circuit or system requirement.In Figs. S16 and S17 we show the maximum deGFP and MGapt production rates as a function of reporter concentration under different conditions. Using these measures, stark differences between simple one-stage gene expression and expression from the two-stage T7 cascade can be seen; for example, at low reporter concentrations, the maximum production rate of deGFP in the cascade is considerably larger than the one-stage rate, even when the strongest promoter is used. The cascade deGFP rates are also relatively flat with respect to reporter concentration. There is also a clear effect of NTPs on peak rates when a cascade is used versus simple expression. In the former case, additional NTPs provide for a significant increase in the maximum protein and mRNA production rates, whereas NTPs have little to no effect on maximum production rates for the Pr-deGFP-MGapt construct.The deGFP production end time t end,T L is shown for all conditions in Fig. S18. t end,T L is between 330 and 350 minutes for simple expression in the 'linear' regime, but as high as ∼580 minutes in some of the conditions and concentrations tested. The end time is a particularly good measure of system capacity when extended performance is required.
Flavin-binding LOV domains are blue-light photosensory modules that are conserved in a number of developmental and circadian regulatory proteins in plants, algae, and fungi. LOV domains are also present in bacterial genomes, and are commonly located at the amino termini of sensor histidine kinases. Genes predicted to encode LOV-histidine kinases are conserved across a broad range of bacterial taxa, from aquatic oligotrophs to plant and mammalian pathogens. However, the function of these putative prokaryotic photoreceptors remains largely undefined. The differentiating bacterium, Caulobacter crescentus, contains an operon encoding a two-component signaling system consisting of a LOV-histidine kinase, LovK, and a single-domain response regulator, LovR. LovK binds a flavin cofactor, undergoes a reversible photocycle, and displays increased ATPase and autophosphorylation activity in response to visible light. Deletion of the response regulator gene, lovR, results in severe attenuation of cell attachment to a glass surface under laminar flow, whereas coordinate, low-level overexpression of lovK and lovR results in a light-independent increase in cell-cell attachment, a response that requires both the conserved histidine phosphorylation site in LovK and aspartate phosphorylation site in LovR. Growing C. crescentus in the presence of blue light dramatically enhances cell-cell attachment in the lovKlovR overexpression background. A conserved cysteine residue in the LOV domain of LovK, which forms a covalent adduct with the flavin cofactor upon absorption of visible light, is necessary for the light-dependent regulation of LovK enzyme activity and is required for the light-dependent enhancement of intercellular attachment.Caulobacter ͉ LOV domain ͉ photoreceptor ͉ signal transduction ͉ histidine kinase P roteins that serve as detectors of environmental signals are often modular, containing conserved sensory domains that control diverse signaling outputs (1, 2). One such sensory module is the PAS (Per-ARNT-Sim) domain, which is conserved across all kingdoms of life and is capable of specifically binding a wide range of ligands including heme, flavins, p-coumaric acid, citrate, and other small molecules (3). A subclass of PAS domains, known as LOV domains for their role as sensors of light, oxygen, or voltage, commonly bind a flavin cofactor and function to regulate a number of blue light-dependent processes in plants and fungi (4). These photosensory LOV domains signal by means of a unique photocycle in which photon absorption drives the reversible formation of a covalent adduct between the 4a carbon of the flavin isoalloxazine ring and a conserved cysteine residue (5, 6). Adduct formation is followed by a large structural change at the C terminus of the LOV domain that leads to cell signaling (7,8). Beyond plants and fungi, dozens of proteins containing LOV photosensory domains have been identified in bacterial species (4, 9). Examples of bacterial LOV photosensors include LOV-phosphodiesterases, LOV-HTH transcription fa...
The robust surface adherence property of the aquatic bacterium Caulobacter crescentus permits visualization of single cells in a linear microfluidic culture chamber over an extended number of generations. The division rate of Caulobacter in this continuous-flow culture environment is substantially faster than in other culture apparati and is independent of flow velocity. Analysis of the growth and division of single isogenic cells reveals that the cell cycle control network of this bacterium generates an oscillatory output with a coefficient of variation lower than that of all other bacterial species measured to date. DivJ, a regulator of polar cell development, is necessary for maintaining low variance in interdivision timing, as transposon disruption of divJ significantly increases the coefficient of variation of both interdivision time and the rate of cell elongation. Moreover, interdivision time and cell division arrest are significantly correlated between mother and daughter cells, providing evidence for epigenetic inheritance of cell division behavior in Caulobacter. The single-cell growth/division results reported here suggest that future predictive models of Caulobacter cell cycle regulation should include parameters describing the variance and inheritance properties of this system.
The many successes of synthetic biology have come in a manner largely different from those in other engineering disciplines; in particular, without well-characterized and simplified prototyping environments to play a role analogous to wind-tunnels in aerodynamics and breadboards in electrical engineering. However, as the complexity of synthetic circuits increases, the benefits—in cost savings and design cycle time—of a more traditional engineering approach can be significant. We have recently developed an in vitro ‘breadboard’ prototyping platform based on E. coli cell extract that allows biocircuits to operate in an environment considerably simpler than but functionally similar to in vivo. The simplicity of this system makes it a promising tool for rapid biocircuit design and testing, as well as for probing fundamental aspects of gene circuit operation normally masked by cellular complexity. In this work we characterize the cell-free breadboard using real-time and simultaneous measurements of transcriptional and translational activities of a small set of reporter genes and a transcriptional activation cascade. We determine the effects of promoter strength, gene concentration, and nucleoside triphosphate concentration on biocircuit properties, and we isolate the specific contributions of essential biomolecular resources—core RNA polymerase and ribosomes—to overall performance. Importantly, we show how limits on resources, particularly those involved in translation, are manifested as reduced expression in the presence of orthogonal genes that serve as additional loads on the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.