Modern map-based accelerator beam-dynamics codes model magnetic elements so as to include nonlinear effects and realistic fringe fields, but they persist in modeling rf cavities as either energy kicks or linear maps. This work presents a method for including the nonlinear effects of rf cavities in a mapbased code.
This paper summarizes the low-loss design for the Spallation Neutron Source accumulator ring ["Spallation Neutron Source Design Manual" (unpublished)]. A hybrid lattice consisting of FODO arcs and doublet straights provides optimum matching and flexibility for injection and collimation. For this lattice, optimization focuses on six design goals: a space-charge tune shift low enough ( below 0.15) to avoid strong resonances, adequate transverse and momentum acceptance for efficient beam collimation, injection optimized for desired target beam shape and minimal halo development, compensation of magnet field errors, control of impedance and instability, and prevention against accidental system malfunction. With an expected collimation efficiency of more than 90%, the uncontrolled fractional beam loss is expected to be at the 10 24 level.
Fundamental advances in experimental nuclear physics will require ion beams with orders of magnitude luminosity increase and temperature reduction. One of the most promising particle accelerator techniques for achieving these goals is electron cooling, where the ion beam repeatedly transfers thermal energy to a copropagating electron beam. The dynamical friction force on a fully ionized gold ion moving through magnetized and unmagnetized electron distributions has been simulated, using molecular dynamics techniques that resolve close binary collisions. We present a comprehensive examination of theoretical models in use by the electron cooling community. Differences in these models are clarified, enabling the accurate design of future electron cooling systems for relativistic ion accelerators.
X-ray beamlines are essential components of all synchrotron light sources. Practical operations involve frequent variation in beamline component positions and orientation, particularly when photon beam parameters shift due to experimental needs, or due to variations in the incoming photon beam. The alignment process can be time consuming and takes away from valuable beam time for experimental data collection. We describe progress in the automation of certain alignment tasks on the tender-energy X-ray spectroscopy (TES) beamline at the National Synchrotron Light Source II (NSLS-II). The beamline is controlled using the BlueSky software in which high level experimental plans guide the beamline components during an experiment. Numerous software packages exist for beamline modeling, and they may be tied to the beamline control system using a package we are continuing to develop called Sirepo-Bluesky. The photon beam distribution may be measured with fluorescent screens, and a relation between beam and machine state can be found by varying the mirror and aperture settings over a multi-dimensional range. We describe the results of such parameter varying measurements and how we are combining Sirepo-Bluesky with machine learning methods and reduced models to automate mirror alignment on the TES beamline.
Accurate spin tracking is a valuable tool for understanding spin dynamics in
particle accelerators and can help improve the performance of an accelerator.
In this paper, we present a detailed discussion of the integrators in the spin
tracking code gpuSpinTrack. We have implemented orbital integrators based on
drift-kick, bend-kick, and matrix-kick splits. On top of the orbital
integrators, we have implemented various integrators for the spin motion. These
integrators use quaternions and Romberg quadratures to accelerate both the
computation and the convergence of spin rotations. We evaluate their
performance and accuracy in quantitative detail for individual elements as well
as for the entire RHIC lattice. We exploit the inherently data-parallel nature
of spin tracking to accelerate our algorithms on graphics processing units.Comment: 43 pages, 17 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.