Spontaneous collective motion, as in some flocks of bird and schools of fish, is an example of an emergent phenomenon. Such phenomena are at present of great interest and physicists have put forward a number of theoretical results that so far lack experimental verification. In animal behaviour studies, large-scale data collection is now technologically possible, but data are still scarce and arise from observations rather than controlled experiments. Multicellular biological systems, such as bacterial colonies or tissues, allow more control, but may have many hidden variables and interactions, hindering proper tests of theoretical ideas. However, in systems on the subcellular scale such tests may be possible, particularly in in vitro experiments with only few purified components. Motility assays, in which protein filaments are driven by molecular motors grafted to a substrate in the presence of ATP, can show collective motion for high densities of motors and attached filaments. This was demonstrated recently for the actomyosin system, but a complete understanding of the mechanisms at work is still lacking. Here we report experiments in which microtubules are propelled by surface-bound dyneins. In this system it is possible to study the local interaction: we find that colliding microtubules align with each other with high probability. At high densities, this alignment results in self-organization of the microtubules, which are on average 15 µm long, into vortices with diameters of around 400 µm. Inside the vortices, the microtubules circulate both clockwise and anticlockwise. On longer timescales, the vortices form a lattice structure. The emergence of these structures, as verified by a mathematical model, is the result of the smooth, reptation-like motion of single microtubules in combination with local interactions (the nematic alignment due to collisions)--there is no need for long-range interactions. Apart from its potential relevance to cortical arrays in plant cells and other biological situations, our study provides evidence for the existence of previously unsuspected universality classes of collective motion phenomena.
We show that a wide class of uncoupled limit-cycle oscillators can be in-phase synchronized by common weak additive noise. An expression of the Lyapunov exponent is analytically derived to study the stability of the noise-driven synchronizing state. The result shows that such a synchronization can be achieved in a broad class of oscillators with little constraint on their intrinsic property. On the other hand, the leaky integrate-and-fire neuron oscillators do not belong to this class, generating intermittent phase slips according to a power law distribution of their intervals.
A Ginzburg-Landau-type equation with nonlocal coupling is derived systematically as a reduced form of a universal class of reaction-diffusion systems near the Hopf bifurcation point and in the presence of another small parameter. The reaction-diffusion systems to be reduced are such that the chemical components constituting local oscillators are nondiffusive or hardly diffusive, so that the oscillators are almost uncoupled, while there is an extra diffusive component which introduces effective nonlocal coupling over the oscillators. Linear stability analysis of the reduced equation about the uniform oscillation is also carried out. This revealed that new types of instability which can never arise in the ordinary complex Ginzburg-Landau equation are possible, and their physical implication is briefly discussed.
Nonlinear coupling between inter-and intra-element dynamics appears as a collective behaviour of elements. The elements in this paper denote symptoms such as a bacterium having an internal network of genes and proteins, a reactive droplet, a neuron in networks, etc. In order to elucidate the capability of such systems, a simple and reasonable model is derived. This model exhibits the rich patterns of systems such as cell membrane, cell fusion, cell growing, cell division, firework, branch, and clustered clusters (self-organized hierarchical structure, modular network). This model is extremely simple yet powerful; therefore, it is expected to impact several disciplines. * Electronic address: dan@ton.scphys.kyoto-u.ac.jp 1
We study the spatial power spectra of Nikolaevskii turbulence in one-dimensional space. First, we show that the energy distribution in wave-number space is extensive in nature. Then, we demonstrate that, when varying a particular parameter, the spectrum becomes qualitatively indistinguishable from that of Kuramoto-Sivashinsky turbulence. Next, we derive the critical exponents of turbulent fluctuations. Finally, we argue that in some previous studies, parameter values for which this type of turbulence does not appear were mistakenly considered, and we resolve inconsistencies obtained in previous studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.