A simple and efficient procedure for the extraction of high-quality DNA from phytoplasma-infected woody and herbaceous plants for polymerase chain reaction (PCR) detection is described. This procedure does not require phenol, chloroform, or alcohol for the precipitation of nucleic acids. Herbaceous and woody plant material are extracted in an identical manner with no additional purification or enrichment steps required. The method utilizes commercially available microspin-column matrices, and the extraction of total DNA can be achieved in less than 1 h. The method has been used to successfully purify phytoplasma DNA from whole leaves, leaf petioles and midribs, roots, and dormant wood from a diverse selection of plant material. The phytoplasmas detected by PCR include pear decline, western X-disease, peach yellow leaf roll, peach rosette, apple proliferation, Australian grapevine yellows, and Vaccinium witches'-broom.
We sequenced 34 new peach latent mosaic viroid (PLMVd) variants isolated from nine different peach cultivars. This study provides the widest view of PLMVd diversity reported to date and includes the original characterization of North American variants, which cannot be differentiated from European sequences. PLMVd appears as a species in which each isolate is a complex mixture of RNAs. Analysis of base-pair covariations supports the hypothesis that PLMVd folds into a complex branched structure with the potential of including three new pseudoknots. The resulting "globular-like" structure is in contrast to the rod-like one adopted by most other viroids.
The peach latent mosaic viroid (PLMVd) is a small, circular RNA species that has been shown to induce RNA silencing in plants. With the goal of better understanding the biological mechanism underlying this process, the siRNAs found in PLMVd infected peach leaves were isolated and sequenced. Analysis of the resulting data prompted several conclusions, including: i. PLMVd strands of both polarities are substrates for the Dicer-like enzymes found in peach leaves; ii. the more highly structured regions of PLMVd trigger the activity of the Dicer-like enzymes; and, iii. the circular PLMVd conformers appear to be favored for transport into the cytoplasm.
We characterized the peach latent mosaic viroid (PLMVd) replication intermediates that accumulate in infected peach leaves and determined the tissue and subcellular localization of the RNA species. Using in situ hybridization, we showed that PLMVd strands of both plus and minus polarities concentrate in the cells forming the palisade parenchyma. At the cellular level, PLMVd was found to accumulate predominantly in chloroplasts. Northern blot analyses demonstrated that PLMVd replicates via a symmetric mode involving the accumulation of both circular and linear monomeric strands of both polarities. No multimeric conformer was detected, indicating that both strands self-cleave efficiently via their hammerhead sequences. Dot blot hybridizations revealed that PLMVd strands of both polarities accumulate equally but that the relative concentrations vary by more than 50-fold between peach cultivars. Taken together these results establish two hallmarks for the classification of viroids. Group A viroids (e.g., PLMVd), which possess hammerhead structures, replicate in the chloroplasts via the symmetric mode. By contrast, group B viroids, which share a conserved central region, replicate in the nucleus via an asymmetric mechanism. This is an important difference between self-cleaving and non-self-cleaving viroids, and the implications for the evolutionary origin and replication are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.