Jet fuel thermal stability at high temperature is receiving increased attention recently as advanced aero engines are being pushed to high power, high pressure and temperature regimes for improved engine cycle performance and low emissions. This paper describes the rig experimental tests to assess the high fuel temperature effect on combustor emissions. A special test rig facility has been designed and set up for emission measurements with preheated fuel. The purpose of the tests is to evaluate the combustor emission characteristics under nominal and elevated fuel temperatures. The scope of the project is two fold: (1) to design, procure and establish a dedicated hot fuel deoxygenation, fuel preheat facility that can reach temperature up to 600 °F (589 K); (2) to measure combustion emissions, mainly NOx, CO and UHC, at normal and elevated fuel temperature under representative engine operating conditions. The test rig has run for extended duration and proved reliable over the whole test campaign. Measured emission results show that fuel temperature effect on NOx, CO, UHC emissions are marginal, possibly due to the low emission capability of the sector combustor that is less sensitive to fuel inlet condition changes than other combustor designs. These results indicate a manageable risk for engine development with elevated fuel temperature from the emission viewpoint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.