Modulation of the effective compression ratio, a measure of the amount of compression of in-cylinder gases above intake manifold conditions, is a key enabler of advanced combustion strategies aimed at reducing emissions while maintaining efficiency, and is directly influenced by modulation of intake valve closing time. To date, the effective compression ratio has most commonly been calculated from in-cylinder pressure data, requiring reliable in-cylinder pressure sensors. These sensors are generally not found on production engines, and thus a method is needed to determine effective compression ratio without in-cylinder pressure data. The work presented here outlines an estimation scheme that combines a high-gain observer with a physically-based volumetric efficiency model to estimate effective compression ratio using only information available from stock engine sensors, including manifold pressures and temperatures and air flows. The estimation scheme is compared to experimental engine data from a unique multi-cylinder diesel engine test bed with flexible intake valve actuation. The effective compression ratio estimator was tested transiently at five engine operating points and demonstrates convergence within three engine cycles after a transient event has occurred, and exhibits steady-state errors of less than 3%.
Accurate calculation of the conditions (i.e., temperature, pressure, and enthalpy) of internal combustion engine cylinder exhaust is critical to the modeling of, and control design development for, gas exchange in modern and future diesel engine systems. In this paper, a physically-based model for cylinder exhaust temperature, pressure, and enthalpy for engines equipped with variable valve actuation is outlined and extensively validated against experimental data from 193 operating points. The model takes the known conditions when the intake valves close and steps through a polytropic compression process, constant pressure combustion process beginning at top-dead center, and a polytropic expansion process to achieve the desired results when the exhaust valves open. To incorporate the flexibility of modulating the intake valve opening and closing, the effective compression ratio is used to establish the conditions when the intake valves close. Experimental model validation, via a unique multi-cylinder diesel engine utilizing fully flexible intake valve actuation, shows that the model captures the influences of all of the model inputs: engine speed, charge flow, total fueling quantity, intake manifold pressure, and effective compression ratio.
One of the major challenges in the control of advanced combustion modes, such as premixed charge compression ignition, is controlling the timing of the combustion event. A nonlinear model-based controller is outlined and experimentally shown to be capable of controlling the engine combustion timing during diesel premixed charge compression ignition operation on a modern diesel engine with variable valve actuation by targeting the desired values of the in-cylinder oxygen mass fraction and the start of injection. Specifically, the experimental results show that the strategy is capable of controlling the start of combustion and the intake oxygen mass fraction to within 1° crank angle and 1% respectively. A stability analysis also demonstrates that this control strategy ensures asymptotically stable error dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.