Razim Lake is the biggest of Romania’s freshwater lakes and along with other basins as Golovita, Zmeica and Sinoie constitutes a system of great ecological significance, playing also an essential role in the supply of water for irrigation, fishery exploitation, farming, flood prevention, recreational navigation and water tourism. Due to their importance, the environmental conditions in the Razim - Sinoie coastal lakes have attracted an increased public attention in contemporary society. To assess the levels, dissemination and potential sources of contamination in the above-mentioned lagoon system, random sampling was used to collect water and sediment samples from every lake and several analytical techniques were performed to investigate their environmental characteristics. The results obtained from this study indicated that, in water, concentrations of various physico-chemical parameters are, mostly, in agreement with correlated environmental standards. Slight variations and/or occasional exceeding of the maximum admissible limits were generally limited to small areas showing levels that would not warrant special concern. In sediments, the mean concentrations of some specific trace metals were below the levels of potential effect. Benthic samples revealed 31 taxa belonging to 16 zoo-benthal subdivisions. The results of this study showed good ecological status despite local several natural and anthropogenic stressors as fishery exploitation, farming, recreational navigation and water tourism.
Forty-three surface sediment samples were collected in September 2019 from Tasaul Lake (Black Sea coast, Romania) to examine the metal distribution patterns, assess the level of metal contamination, and identify the pollutant sources. The determined mean metal concentrations were as follows: Al 49,772 mg/kg, Zn 84.40 mg/kg, Cr 83.70 mg/kg, V 76.45 mg/kg, Ni 42.53 mg/kg, Cu 34.27 mg/kg, Pb 26.30 mg/kg, As 12.49 mg/kg, and Hg 0.06 mg/kg. The metals in the surface sediments of Tasaul Lake displayed moderate spatial variation, with higher metal concentrations mainly occurring in the south and southeast (As, Pb, and Hg), southwest (Cu and Zn), and west of the lake (Cr, Ni, and V). Heavy metal contamination in sediments is assessed using pollution indices such as enrichment factor, contamination factor, and pollution load index. The highest CFs and EFs were determined for As (moderate to high pollution), followed by Pb (low to moderate pollution). The Cu, Zn, and Hg pollution indices showed values corresponding to low pollution levels, while Ni, Cr, and V presented the lowest indices, suggesting unpolluted sediments. Multivariate statistical analyses were performed to identify the origin of the analyzed heavy metals. Cr was predominantly sourced from lithogenic components, Ni and V originated from both natural and anthropogenic sources, and As, Cu, Zn, Pb, and Hg showed mainly anthropogenic sources such as agricultural runoff, domestic and industrial wastewater discharges, and quarrying activities.
Chlorophyll a (Chl a) dynamics in the near-shore waters of the NW Black Sea was investigated between 2002 and 2010 in the Mamaia Bay (north of Constanta, Romania) in relation to some physical-chemical parameters. Chl a ranged from values below detection limit (0.17 µg ) to 76.13 µg . l -1 , and showed large temporal variability (CV = 142.3%), strongly related to the Danube's discharges, meteorological conditions, and anthropogenic pressures.Seasonally, Chl a showed a winter/early spring maximum, sometimes followed by a stronger one in April/early May, closely linked to the Danube's higher discharges in spring. After significantly lower concentrations in late spring/early summer, Chl a exhibited its strongest maximum in summer (July-August), followed by another one in autumn (late September-October).Interannual variation of Chl a seems to be controlled by the hydrometeorological conditions in summer. Thus, the highest annual Chl a means were observed in 2006 (8.56 ± 8.35 µg . l -1 ) and 2010 (9.20 ± 11.72 µg . l -1 ), when, also, the summer Chl a concentrations were maximal due to the large riverine discharges. The lowest annual Chl a mean was observed in 2004 (4.57 ± 9.81 µg . l -1 ), closely linked to minimal summer Chl a resulted from a strong P limitation during summertime.
Mercury (Hg) pollution legacy of chlor-alkali plants will be an important issue in the next decades with the planned phase out of Hg-based electrodes by 2025 within the Minamata convention. In such a context, the present study aimed to examine the extent of Hg contamination in the reservoirs surrounding the Oltchim plant and to evaluate the possible improvement of the environmental quality since the closure of its chlor-alkali unit. This plant is the largest chlor-alkali plant in Romania, which partly switched to Hg-free technology in 1999 and definitely stopped the use of Hg electrolysis in May 2012. Total Hg (THg) and methylmercury (CHHg) concentrations were found to decrease in the surface waters and sediments of the reservoirs receiving the effluents of the chlor-alkali platform since the closure of Hg units. Hence, calculated risk quotients (RQ) indicated no adverse effect of Hg for aquatic organisms from the ambient water exposure. RQ of Hg in sediments were mostly all higher than 1, showing important risks for benthic organisms. However, ecotoxicity testing of water and sediments suggest possible impact of other contaminants and their mixtures. Hg hotspots were found in soils around the platform with RQ values much higher than 1. Finally, THg and CHHg concentrations in fish were below the food safety limit set by the WHO, which contrasts with previous measurements made in 2007 revealing that 92 % of the studied fish were of high risk of consumption. Discontinuing the use of Hg electrodes greatly improved the surrounding environment of chlor-alkali plants within the following years and led to the decrease environmental exposure to Hg through fish consumption. However, sediment and soil still remained highly contaminated and problematic for the river reservoir management. The results of this ecological risk assessment study have important implications for the evaluation of the benefits as well as limits of the Minamata Convention implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.