Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
Terms of use:
Documents in
AbstractMany statistical applications require the forecast of a random variable of interest over several periods into the future. The sequence of individual forecasts, one period at a time, is called a path forecast, where the term path refers to the sequence of individual future realizations of the random variable. The problem of constructing a corresponding joint prediction region has been rather neglected in the literature so far: such a region is supposed to contain the entire future path with a prespecified probability. We develop bootstrap methods to construct joint prediction regions. The resulting regions are proven to be asymptotically consistent under a mild high-level assumption. We compare the finitesample performance of our joint prediction regions to some previous proposals via Monte Carlo simulations. An empirical application to a real data set is also provided.
This note tests the assumption of dynamic discrete choice models that underlying utility shocks have an extreme value type I distribution. We find that extreme value type I shocks cannot be rejected in most specifications of the Rust (1987) Abstract This note tests the assumption of dynamic discrete choice models that underlying utility shocks are distributed extreme value type I. We find that extreme value type I shocks cannot be rejected in most specifications of the Rust (1987) bus engine replacement model.
Many economic and financial applications require the forecast of a random variable of interest over several periods into the future. The sequence of individual forecasts, one period at a time, is called a path forecast, where the term path refers to the sequence of individual future realizations of the random variable. The problem of constructing a corresponding joint prediction region has been rather neglected in the literature so far: such a region is supposed to contain the entire future path with a prespecified probability. We develop a bootstrap method to construct such a joint prediction region. The resulting region is proven to be asymptotically consistent under a mild high-level assumption. It also has better finite-sample performance than previous proposals in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.