Given a ground set of items, the result diversification problem aims to select a subset with high "quality" and "diversity" while satisfying some constraints. It arises in various real-world artificial intelligence applications, such as web-based search, document summarization and feature selection, and also has applications in other areas, e.g., computational geometry, databases, finance and operations research. Previous algorithms are mainly based on greedy or local search. In this paper, we propose to reformulate the result diversification problem as a bi-objective maximization problem, and solve it by a multi-objective evolutionary algorithm (EA), i.e., the GSEMO. We theoretically prove that the GSEMO can achieve the (asymptotically) optimal theoretical guarantees under both static and dynamic environments. For cardinality constraints, the GSEMO can achieve the optimal polynomial-time approximation ratio, 1/2. For more general matroid constraints, the GSEMO can achieve the asymptotically optimal polynomial-time approximation ratio, 1/2 − /(4n). Furthermore, when the objective function (i.e., a linear combination of quality and diversity) changes dynamically, the GSEMO can maintain this approximation ratio in polynomial running time, addressing the open question proposed by Borodin et al. [6]. This also theoretically shows the superiority of EAs over local search for solving dynamic optimization problems for the first time, and discloses the robustness of the mutation operator of EAs against dynamic changes. Experiments on the applications of web-based search, multi-label feature selection and document summarization show the superior performance of the GSEMO over the state-of-the-art algorithms (i.e., the greedy algorithm and local search) under both static and dynamic environments.
Evolutionary algorithms (EAs) are general-purpose optimization algorithms, inspired by natural evolution. Recent theoretical studies have shown that EAs can achieve good approximation guarantees for solving the problem classes of submodular optimization, which have a wide range of applications, such as maximum coverage, sparse regression, influence maximization, document summarization and sensor placement, just to name a few. Though they have provided some theoretical explanation for the general-purpose nature of EAs, the considered submodular objective functions are defined only over sets or multisets. To complement this line of research, this paper studies the problem class of maximizing monotone submodular functions over sequences, where the objective function depends on the order of items. We prove that for each kind of previously studied monotone submodular objective functions over sequences, i.e., prefix monotone submodular functions, weakly monotone and strongly submodular functions, and DAG monotone submodular functions, a simple multi-objective EA, i.e., GSEMO, can always reach or improve the best known approximation guarantee after running polynomial time in expectation. Note that these best-known approximation guarantees can be obtained only by different greedy-style algorithms before. Empirical studies on various applications, e.g., accomplishing tasks, maximizing information gain, searchand-tracking and recommender systems, show the excellent performance of the GSEMO.
Machine learning models have liberated manpower greatly in many real-world tasks, but their predictions are still worse than humans on some specific instances. To improve the performance, it is natural to optimize machine learning models to take decisions for most instances while delivering a few tricky instances to humans, resulting in the problem of Human Assisted Learning (HAL). Previous works mainly formulated HAL as a constrained optimization problem that tries to find a limited subset of instances for human decision such that the sum of model and human errors can be minimized; and employed the greedy algorithms, whose performance, however, may be limited due to the greedy nature. In this paper, we propose a new framework HAL-EMO based on Evolutionary Multi-objective Optimization, which reformulates HAL as a bi-objective optimization problem that minimizes the number of selected instances for human decision and the total errors simultaneously, and employs a Multi-Objective Evolutionary Algorithm (MOEA) to solve it. We implement HAL-EMO using two MOEAs, the popular NSGA-II as well as the theoretically grounded GSEMO. We also propose a specific MOEA, called BSEMO, with biased selection and balanced mutation for HAL-EMO, and prove that for human assisted regression and classification, HAL-EMO using BSEMO can achieve better and same theoretical guarantees than previous greedy algorithms, respectively. Experiments on the tasks of medical diagnosis and content moderation show the superiority of HAL-EMO (with either NSGA-II, GSEMO or BSEMO) over previous algorithms, and that using BSEMO leads to the best performance of HAL-EMO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.