Influenza A remains a significant public health challenge because of the emergence of antigenically shifted or highly virulent strains. Antiviral resistance to available drugs such as adamantanes or neuraminidase inhibitors has appeared rapidly, creating a need for new antiviral targets and new drugs for influenza virus infections. Using forward chemical genetics, we have identified influenza A nucleoprotein (NP) as a druggable target and found a small-molecule compound, nucleozin, that triggers the aggregation of NP and inhibits its nuclear accumulation. Nucleozin impeded influenza A virus replication in vitro with a nanomolar median effective concentration (EC(50)) and protected mice challenged with lethal doses of avian influenza A H5N1. Our results demonstrate that viral NP is a valid target for the development of small-molecule therapies.
Peroxynitrite (ONOO(-)), the product of a radical combination reaction of nitric oxide and superoxide, is a potent biological oxidant involved in a broad spectrum of physiological and pathological processes. Herein we report the development, characterization, and biological applications of a new fluorescent probe, HKGreen-4, for peroxynitrite detection and imaging. HKGreen-4 utilizes a peroxynitrite-triggered oxidative N-dearylation reaction to achieve an exceptionally sensitive and selective fluorescence turn-on response toward peroxynitrite in chemical systems and biological samples. We have thoroughly evaluated the utility of HKGreen-4 for intracellular peroxynitrite imaging and, more importantly, demonstrated that HKGreen-4 can be efficiently employed to visualize endogenous peroxynitrite generated in Escherichia coli-challenged macrophages and in live tissues from a mouse model of atherosclerosis. This probe should serve as a powerful molecular imaging tool to explore peroxynitrite biology under a variety of physiological and pathological contexts.
A fluorescent probe, HKOCl-1, has been successfully developed for the detection of hypochlorous acid on the basis of a specific reaction with p-methoxyphenol. The formation of HOCl has been successfully detected not only in an abiotic system but also in an enzymatic system (myeloperoxidase/H2O2/Cl(-) system) and in living macrophage cells upon stimulation. This new probe might be used as an efficient tool for probing the roles HOCl plays in biological systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.