Internet of things devices can offload some tasks to the edge servers through the wireless network, thus the computing pressure and energy consumption are reduced. But this will increase the cost of communication. Therefore, it is necessary to maintain the balance between task execution energy and experiment when designing the offloading strategy for the edge computing scenario of the Internet of things. This paper proposes an offloading strategy which can optimize the energy consumption and time delay of task execution at the same time. This strategy satisfies different preferences of users. First, the above task is modeled as a multi-objective optimization problem, and the Pareto solution set is found by improving the strength Pareto evolutionary algorithm (SPEA2). Based on the Pareto set, the offloading strategy satisfying the requires of users with different preferences by offloading cost estimation. Second, a simulation experiment is carried out to verify the robustness of the improved SPEA2 algorithm under the influence of different main parameters. By comparing with other algorithms. It is proved that the improved SPEA2 algorithm can minimize the balance between task execution delay and energy consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.