Computer-aided detection (CADe) systems have been actively researched for polyp detection in colonoscopy. To be an effective system, it is important to detect additional polyps that may be easily missed by endoscopists. Sessile serrated lesions (SSLs) are a precursor to colorectal cancer with a relatively higher miss rate, owing to their flat and subtle morphology. Colonoscopy CADe systems could help endoscopists; however, the current systems exhibit a very low performance for detecting SSLs. We propose a polyp detection system that reflects the morphological characteristics of SSLs to detect unrecognized or easily missed polyps. To develop a well-trained system with imbalanced polyp data, a generative adversarial network (GAN) was used to synthesize high-resolution whole endoscopic images, including SSL. Quantitative and qualitative evaluations on GAN-synthesized images ensure that synthetic images are realistic and include SSL endoscopic features. Moreover, traditional augmentation methods were used to compare the efficacy of the GAN augmentation method. The CADe system augmented with GAN synthesized images showed a 17.5% improvement in sensitivity on SSLs. Consequently, we verified the potential of the GAN to synthesize high-resolution images with endoscopic features and the proposed system was found to be effective in detecting easily missed polyps during a colonoscopy.
Background Accurate interpretation of chest radiographs requires years of medical training, and many countries face a shortage of medical professionals to meet such requirements. Recent advancements in artificial intelligence (AI) have aided diagnoses; however, their performance is often limited due to data imbalance. The aim of this study was to augment imbalanced medical data using generative adversarial networks (GANs) and evaluate the clinical quality of the generated images via a multi-center visual Turing test. Methods Using six chest radiograph datasets, (MIMIC, CheXPert, CXR8, JSRT, VBD, and OpenI), starGAN v2 generated chest radiographs with specific pathologies. Five board-certified radiologists from three university hospitals, each with at least five years of clinical experience, evaluated the image quality through a visual Turing test. Further evaluations were performed to investigate whether GAN augmentation enhanced the convolutional neural network (CNN) classifier performances. Results In terms of identifying GAN images as artificial, there was no significant difference in the sensitivity between radiologists and random guessing (result of radiologists: 147/275 (53.5%) vs result of random guessing: 137.5/275, (50%); p = .284). GAN augmentation enhanced CNN classifier performance by 11.7%. Conclusion Radiologists effectively classified chest pathologies with synthesized radiographs, suggesting that the images contained adequate clinical information. Furthermore, GAN augmentation enhanced CNN performance, providing a bypass to overcome data imbalance in medical AI training. CNN based methods rely on the amount and quality of training data; the present study showed that GAN augmentation could effectively augment training data for medical AI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.