Phosphate (Pi) remobilization within a plant is critical for plant survival under Pi-limiting conditions. In this paper, a soybean Pi transporter gene, GmPT1, was characterized. A marked induction of GmPT1 transcript was observed in young leaves, mature leaves and lateral roots during longterm Pi starvation. Transgenic tobacco plants containing the GmPT1 gene were obtained using an Agrobacteriummediated transformation system. Compared with wild-type plants, transgenic plants showed significant increases in phosphorus-use efficiency (PUE), photosystem II (PSII) function, total dry weight and seed weight under Pi-deficient conditions. GmPT1 expression levels and PUE were determined in a soybean recombinant inbred line population during a pot experiment that was conducted to measure chlorophyll fluorescence parameters, photosynthetic rate (PN) and seed yield. Correlation analysis revealed that GmPT1 expression levels had significantly positive correlations with seed yield, PUE, PN and the quantum yield of PSII primary photochemistry (ΦPSII). Expression quantitative trait loci (eQTL) mapping for GmPT1 revealed two eQTLs, one of which coincided with both the physical location of GmPT1 and a QTL associated with seed yield. These results suggest that GmPT1 plays a role in Pi remobilization, and it may be possible to improve soybean seed yields under Pi-limiting conditions by modulating GmPT1 expression levels.
Nine new polyoxygenated eremophilane sesquiterpenes, periconianones C-K (1-9), including one unusual isoeremophilane sesquiterpene, periconianone C (1), and four trinor-eremophilane sesquiterpenes, periconianones H-K (6-9), were isolated from the endophytic fungus Periconia sp. F-31. Compound 1 is the first furan-type isoeremophilane reported containing a linkage of C-8/C-11 and a 7,12-epoxy moiety. These compound structures, including absolute configurations, were elucidated through extensive spectroscopic data analysis, electronic circular dichroism, Mo2(AcO)4-induced circular dichroism, and single-crystal X-ray diffraction (Cu Kα). Compounds 2, 5, and 9 showed inhibition effects on lipopolysaccharide-induced NO production in BV2 cells by 10.2%, 18.3%, and 16.1% at a concentration of 1.0 μM, respectively, which is comparable to the positive control curcumin (12.9% at 1.0 μM).
The alternating cell specifications of root epidermis to form hair cells or nonhair cells in Arabidopsis are determined by the expression level of GL2, which is activated by an MYB–bHLH–WD40 (WER–GL3–TTG1) transcriptional complex. The phytohormone ethylene (ET) has a unique effect of inducing N-position epidermal cells to form root hairs. However, the molecular mechanisms underlying ET-induced ectopic root hair development remain enigmatic. Here, we show that ET promotes ectopic root hair formation through down-regulation of GL2 expression. ET-activated transcription factors EIN3 and its homolog EIL1 mediate this regulation. Molecular and biochemical analyses further revealed that EIN3 physically interacts with TTG1 and interferes with the interaction between TTG1 and GL3, resulting in reduced activation of GL2 by the WER–GL3–TTG1 complex. Furthermore, we found through genetic analysis that the master regulator of root hair elongation, RSL4, which is directly activated by EIN3, also participates in ET-induced ectopic root hair development. RSL4 negatively regulates the expression of GL2, likely through a mechanism similar to that of EIN3. Therefore, our work reveals that EIN3 may inhibit gene expression by affecting the formation of transcription-activating protein complexes and suggests an unexpected mutual inhibition between the hair elongation factor, RSL4, and the hair specification factor, GL2. Overall, this study provides a molecular framework for the integration of ET signaling and intrinsic root hair development pathway in modulating root epidermal cell specification.
The development of a hook‐like structure at the apical part of the soil‐emerging organs has fascinated botanists for centuries, but how it is initiated remains unclear. Here, we demonstrate with high‐throughput infrared imaging and 2‐D clinostat treatment that, when gravity‐induced root bending is absent, apical hook formation still takes place. In such scenarios, hook formation begins with a de novo growth asymmetry at the apical part of a straightly elongating hypocotyl. Remarkably, such de novo asymmetric growth, but not the following hook enlargement, precedes the establishment of a detectable auxin response asymmetry, and is largely independent of auxin biosynthesis, transport and signaling. Moreover, we found that functional cortical microtubule array is essential for the following enlargement of hook curvature. When microtubule array was disrupted by oryzalin, the polar localization of PIN proteins and the formation of an auxin maximum became impaired at the to‐be‐hook region. Taken together, we propose a more comprehensive model for apical hook initiation, in which the microtubule‐dependent polar localization of PINs may mediate the instruction of growth asymmetry that is either stochastically taking place, induced by gravitropic response, or both, to generate a significant auxin gradient that drives the full development of the apical hook.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.