Diabetic neuropathic pain (DNP) is a common and serious complication of diabetic patients. The pathogenesis of DNP is largely unclear. The proinflammation proteins, CXCR4, and TNF-α play critical roles in the development of pain, while their relative roles in the development of DNP and especially its progression is unknown. We proposed that establishment of diabetic pain models in rodents and evaluating the stability of behavioral tests are necessary approaches to better understand the mechanism of DNP. In this study, Von Frey and Hargreaves Apparatus was used to analyze the behavioral changes of mechanical allodynia and heat hyperalgesia in streptozotocin-induced diabetic rats at different phases of diabetes. Moreover, CXCR4 and TNF-α of spinal cord dorsal and dorsal root ganglia (DRG) were detected by western blotting and immunostaining over time. The values of paw withdrawal threshold (PWT) and paw withdrawal latencies (PWL) were reduced as early as 1 week in diabetic rats and persistently maintained at lower levels during the progression of diabetes as compared to control rats that were concomitant with significant increases of both CXCR4 and TNF-α protein expressions in the DRG at 2 weeks and 5 weeks (the end of the experiments) of diabetes. By contrast, CXCR4 and TNF-α in the spinal cord dorsal horn did not significantly increase at 2 weeks of diabetes while both were significantly upregulated at 5 weeks of diabetes. The results indicate that central sensitization of spinal cord dorsal may result from persistent peripheral sensitization and suggest a potential reference for further treatment of DNP.
Introduction: MicroRNA-223 (MiR-223) serves as an important regulator of inflammatory and immune responses and is implicated in several auto-inflammatory disorders. Here, we measured miR-223 expression in acute and intercritical gout patients, after which we used RAW264.7 macrophages transfected with a miR-223 mimic/inhibitor to determine the function of miR-223 in monosodium urate (MSU)-induced gouty inflammation.Methods and Results: MiR-223 was detected among 122 acute gout patients (AG), 118 intercritical gout patients (IG), and 125 healthy subjects (HC). RAW264.7 macrophages were cultured and treated with MSU. Over-expression or under-expression of miR-223 was inducted in RAW264.7 macrophages to investigate the function of miR-223. Real-time quantitative PCR, ELISA and western blotting were used to determine the expression levels of miR-223, cytokines and the NLRP3 inflammasome (NLRP3, ASC, and caspase-1). MiR-223 expression was significantly decreased in the AG group in comparison with the IG and HC groups (p < 0.001, respectively). Up-regulated expression of miR-223 was observed after acute gout remission in comparison with that observed during gout flares in 30 paired cases (p < 0.001). The abundance of the NLRP3 inflammasome and cytokines was significantly increased after RAW264.7 macrophages were treated with MSU (p < 0.01, respectively), while that of miR-223 was significantly reduced (p < 0.01). Up-regulation of miR-223 decreased the concentrations of IL-1β and TNF-α, as well as the NLRP3 inflammasome expression (p < 0.01, respectively), while IL-37 and TGF-β1 levels were unchanged (p > 0.05, respectively). Under-expression of miR-223 increased the concentrations of IL-1β and TNF-α, as well as NLRP3 inflammasome expression (p < 0.01, respectively), while IL-37 and TGF-β1 levels were not influenced (p > 0.05, respectively).Conclusion: These findings suggest that miR-223 provides negative feedback regulation of the development of gouty inflammation by suppressing production of IL-1β and TNF-α, but not by regulating IL-37 and TGF-β1. Moreover, miR-223 regulates cytokine production by targeting the NLRP3 inflammasome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.