Diabetes is a serious, chronic disease that has been seeing a rise in the number of cases and prevalence over the past few decades. It can lead to serious complications and can increase the overall risk of dying prematurely. Data-oriented prediction models have become effective tools that help medical decision-making and diagnoses in which the use of machine learning in medicine has increased substantially. This research introduces the Recursive General Regression Neural Network Oracle (RGRNN Oracle) and is applied on the Pima Indians Diabetes dataset for the prediction and diagnosis of
diabetes. The R-GRNN Oracle (Bani-Hani, 2017) is an enhancement to the GRNN Oracle developed by Masters et al. in 1998, in which the recursive model is created of two oracles: one within the other. Several classifiers, along with the R-GRNN Oracle and the GRNN Oracle, are applied to the dataset, they are: Support Vector Machine (SVM), Multilayer Perceptron (MLP), Probabilistic Neural Network (PNN), Gaussian Naïve Bayes (GNB), K-Nearest Neighbor (KNN), and Random Forest (RF). Genetic Algorithm (GA) was used for feature selection as well as the hyperparameter optimization of SVM and MLP, and Grid Search (GS) was used to optimize the hyperparameters of KNN and RF. The performance metrics accuracy, AUC, sensitivity, and specificity were recorded for each classifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.