Background: Syntaxin forms nano-sized clusters at the plasma membrane whose inner organization is unknown. Results: In the clusters, the density of proteins gradually decreases toward the periphery. Conclusion: Syntaxin reactivity is influenced by its location within the clusters. Significance: dSTORM imaging combined with cluster analysis significantly contributes to understanding membranal protein distribution and cluster organization.
Parkinson’s disease (PD) is characterized by the presence of α-synuclein aggregates known as Lewy bodies and Lewy neurites, whose formation is linked to disease development. The causal relation between α-synuclein aggregates and PD is not well understood. We generated a new transgenic mouse line (MI2) expressing human, aggregation-prone truncated 1–120 α-synuclein under the control of the tyrosine hydroxylase promoter. MI2 mice exhibit progressive aggregation of α-synuclein in dopaminergic neurons of the substantia nigra pars compacta and their striatal terminals. This is associated with a progressive reduction of striatal dopamine release, reduced striatal innervation and significant nigral dopaminergic nerve cell death starting from 6 and 12 months of age, respectively. In the MI2 mice, alterations in gait impairment can be detected by the DigiGait test from 9 months of age, while gross motor deficit was detected by rotarod test at 20 months of age when 50% of dopaminergic neurons in the substantia nigra pars compacta are lost. These changes were associated with an increase in the number and density of 20–500 nm α-synuclein species as shown by dSTORM. Treatment with the oligomer modulator anle138b, from 9 to 12 months of age, restored striatal dopamine release, prevented dopaminergic cell death and gait impairment. These effects were associated with a reduction of the inner density of large α-synuclein aggregates and an increase in dispersed small α-synuclein species as revealed by dSTORM. The MI2 mouse model recapitulates the progressive dopaminergic deficit observed in PD, showing that early synaptic dysfunction is associated to fine behavioral motor alterations, precedes dopaminergic axonal loss and neuronal death that become associated with a more consistent motor deficit upon reaching a certain threshold. Our data also provide new mechanistic insight for the effect of anle138b’s function in vivo supporting that targeting α-synuclein aggregation is a promising therapeutic approach for PD.Electronic supplementary materialThe online version of this article (10.1007/s00401-019-02023-x) contains supplementary material, which is available to authorized users.
The antimicrobial activity of cationic amphipathic peptides is due mainly to the adsorption of peptides onto target membranes, which can be modulated by such physicochemical parameters as charge and hydrophobicity. We investigated the structure of dermaseptin B2 (Drs B2) at the aqueous/synthetic solid support interface and its adsorption kinetics using attenuated total reflection Fourier transform infrared spectroscopy and surface plasmon resonance. We determined the conformation and affinity of Drs B2 adsorbed onto negatively charged (silica or dextran) and hydrophobic supports. Synthetic supports of differing hydrophobicity were obtained by modifying silica or gold with omega-functionalized alkylsilanes (bromo, vinyl, phenyl, methyl) or alkylthiols. The peptide molecules adsorbed onto negatively charged supports mostly had a beta-type conformation. In contrast, a monolayer of Drs B2, mainly in the alpha-helical conformation, was adsorbed irreversibly onto the hydrophobic synthetic supports. The conformational changes during formation of the adsorbed monolayer were monitored by two-dimensional Fourier transform infrared spectroscopy correlation; they showed the influence of peptide-peptide interactions on alpha-helix folding on the most hydrophobic support. The orientation of the alpha-helical Drs B2 with respect to the hydrophobic support was determined by polarized attenuated total reflection; it was around 15 +/- 5 degrees. This orientation was confirmed and illustrated by a molecular dynamics study. These combined data demonstrate that specific chemical environments influence the structure of Drs B2, which could explain the many functions of antimicrobial peptides.
Background: Tomosyn's WD40 domain affects its ability to inhibit exocytosis. Results: Unstructured loops in the WD40 domain are involved in tomosyn's diffusion and organization on the plasma membrane. Conclusion: These key loops mediate tomosyn's binding to the SNARE protein SNAP25. Significance: Novel findings regarding tomosyn's membranal distribution and interactions shed new light on regulation of exocytosis by the SNARE complex and tomosyn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.