Aquaporins enable the passage of a diverse set of solutes besides water. Many novel aquaporin permeants, such as antimonite and arsenite, silicon, ammonia, and hydrogen peroxide, have been described very recently. By the same token, the number of available aquaporin sequences has rapidly increased. Yet, sequence analyses and structure models cannot reliably predict permeability properties. Even the contribution to pore selectivity of individual residues in the channel layout is not fully understood. Here, we describe and discuss established in vitro assays for water and solute permeability. Measurements of volume change due to flux along osmotic or chemical gradients yield quantitative biophysical data, whereas phenotypic growth assays can hint at the relevance of aquaporins in the physiological setting of a certain cell. We also summarize data on the modification of pore selectivity of the prototypical water-specific mammalian aquaporin-1. We show that replacing residues in the pore constriction region allows ammonia, urea, glycerol, and even protons to pass the aquaporin pore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.